首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
2.
3.
Hong J  Lu S  Zhang C  Qi S  Wang Y 《Chemosphere》2011,84(11):1542-1547
A new Vis-Fe0-H2O2-citrate-O2 system comprising zero-valent iron, hydrogen peroxide, citrate anion and aeration at circumneutral pH under visible irradiation was studied. 21 μmol L−1 of Rhodamine B (RhB) was chosen as the substrate to be tested. Experiments were conducted under conditions of 2.9 mmol L−1 of H2O2, 12.6 g of Fe0 and 1.0 mmol L−1 of citrate at pH 7.5. Results showed that, in 1 h reaction, 54% of RhB was removed with corresponding 26% of COD reduced. Meanwhile, the amount of released dissolved irons from Fe0 surface was found to be at a very low level as <5.4 μmol L−1. Extinguishing tests with isopropanol suggested that RhB oxidation by hydroxyl radicals was the main process taken place in Vis-Fe0-H2O2-citrate-O2 system, which accounted for 75% of substrate removal in 3 h reaction. Control and factor influencing experiments showed that the prohibitive extents of individual factor importance on RhB removal followed a decreasing order of Fe0 > H2O2 > citrate > Vis > O2. This study showed an excellent system that could remove refractory organic compounds from water in laboratory researches, and also provided a good idea to reduce secondary contamination by dissolved irons in future investigations.  相似文献   

4.
5.
Dong H  Guan X  Wang D  Li C  Yang X  Dou X 《Chemosphere》2011,85(7):1115-1121
Batch experiments were carried out to investigate the influences of H2O2/Fe(II) molar ratio, pH, sequence of pH adjustment, initial As(V) concentration, and interfering ions on As(V) removal in H2O2-Fe(II) process from synthetic acid mine drainage (AMD). The optimum H2O2/Fe(II) molar ratio was one for arsenate removal over the pH range of 4-7. Arsenate removal at pH 3 was poor even at high Fe(II) dosage due to the high solubility of Fe(III) formed in situ. With the increase of Fe(II) dosage, arsenate removal increased progressively before a plateau was reached at pH 5 as arsenate concentration varied from 0.05 to 2.0 mg L−1. However, arsenate removal was negligible at Fe/As molar ratio <3 and then experienced a striking increase before a plateau was reached at pH 7 and arsenate concentration ≥1.0 mg L−1. The co-occurring ions exerted no significant effect on arsenate removal at pH 5. The experimental results with synthetic AMD revealed that this method is highly selective for arsenate removal and the co-occurring ions either improved arsenate removal or slightly depressed arsenate removal at pH 5-7. The extended X-ray absorption fine structure (EXAFS) derived As-Fe length, 3.27-3.30 Å, indicated that arsenate was removed by forming bidentate-binuclear complexes with FeO(OH) octahydra. The economic analysis revealed that the cost of the H2O2-Fe(II) process was only 17-32% of that of conventional Fe(III) coagulation process to achieve arsenate concentration below 10 μg L−1 in treated solution. The results suggested that the H2O2-Fe(II) process is an efficient, economical, selective and practical method for arsenate removal from AMD.  相似文献   

6.
The organic matter present in the concentrate streams generated from reverse osmosis (RO) based municipal wastewater reclamation processes poses environmental and health risks on its disposal to the receiving environment (e.g., estuaries, bays). The potential of a biological activated carbon (BAC) process combined with pre-oxidation using a UVC/H2O2 advanced oxidation process for treating a high salinity (TDS ∼ 10 000 mg L−1) municipal wastewater RO concentrate (ROC) was evaluated at lab scale during 90 d of operation. The combined treatment reduced the UVA254 and colour of the ROC to below those for the influent of the RO process (i.e., biologically treated secondary effluent), and the reductions in DOC and COD were approximately 60% and 50%, respectively. UVC/H2O2 was demonstrated to be an effective means of converting the recalcitrant organic compounds in the ROC into biodegradable substances which were readily removed by the BAC process, leading to a synergistic effect of the combined treatment in degrading the organic matter. The tests using various BAC feed concentrations suggested that the biological treatment was robust and consistent for treating the high salinity ROC. Using Microtox analysis no toxicity was detected for the ROC after the combined treatment, and the trihalomethane formation potential was reduced from 3.5 to 2.8 mg L−1.  相似文献   

7.
8.
In the present study we investigate the fate of citalopram (CIT) at neutral pH using advanced water treatment technologies that include O3, ClO2 oxidation, UV irradiation and Fenton oxidation. The ozonation resulted in 80% reduction after 30 min treatment. Oxidation with ClO2 removed >90% CIT at a dosage of 0.1 mg L−1. During UV irradiation 85% reduction was achieved after 5 min, while Fenton with addition of 14 mg L−1 (Fe2+) resulted in 90% reduction of CIT. During these treatment experiments transformation products (TPs) were formed from CIT, where five compounds were identified by using high resolution and tandem mass spectrometry. Among these desmethyl-citalopram and citalopram N-oxide have been previously identified as human metabolites, while three are novel and published here for the first time. The three TPs are a hydroxylated dimethylamino-side chain derivative, a butyrolactone derivative and a defluorinated derivative of CIT.  相似文献   

9.
Two types of nano-pore substrates, waste-reclaimed (WR) and soil mineral (SM) with the relatively low density, were modified by the reaction with irons (i.e. Fe(II):Fe(III) = 1:2) and the applicability of the modified substrates (i.e. Fe-WR and Fe-SM) on cyanide removal was investigated. Modification (i.e. Fe immobilization on substrate) decreased the BET surface area and PZC of the original substrates while it increased the pore diameter and the cation exchange capacity (CEC) of them. XRD analysis identified that maghemite (γ-Fe2O3) and iron silicate composite ((Mg, Fe)SiO3) existed on Fe-WR, while clinoferrosilite (FeSiO3) was identified on Fe-SM. Cyanide adsorption showed that WR adsorbed cyanide more favorably than SM. The adsorption ability of both original substrates was enhanced by the modification, which increased the negative charges of the surfaces. Without the pH adjustment, cyanide was removed as much as 97% by the only application of Fe-WR, but the undesirable transfer to hydrogen cyanide was possible because the pH was dropped to around 7.5. With a constant pH of 12, only 54% of cyanide was adsorbed on Fe-WR. On the other hand, the pH was kept as 12 without adjustment in Fe-WR/H2O2 system and cyanide was effectively removed by not only adsorption but also the catalytic oxidation. The observed first-order rate constant (kobs) for cyanide removal were 0.49 (±0.081) h−1. Moreover, the more cyanate production with the modified substrates indicated the iron composites, especially maghemite, on substrates had the catalytic property to increase the reactivity of H2O2.  相似文献   

10.
Dieldrin, one of persistent pesticides, is highly resistant to biotic and abiotic degradation. It is accumulated in organisms. Recent studies suggest that dieldrin exerts a potent cytotoxic action on cells exposed to oxidative stress. In this study, the effect of dieldrin on rat thymocytes exposed to hydrogen peroxide (H2O2)-induced oxidative stress was examined. Dieldrin at 5 μM and H2O2 at 300 μM slightly increased cell lethality from a control value of 5.4 ± 0.5% (mean ± standard deviation of four experiments) to 7.8 ± 1.3% and 9.0 ± 0.3%, respectively. Simultaneous application of dieldrin and H2O2 significantly increased cell lethality to 46.2 ± 1.8%. The synergistic increase in cell lethality was dependent on dieldrin concentration (0.3–5 μM) but not on H2O2 concentration (30–300 μM). Dieldrin accelerated H2O2-induced cell death, which was estimated with the help of annexin V-FITC and propidium iodide. Presence of either dieldrin or H2O2 decreased the cellular content of nonprotein thiol and increased intracellular Zn2+ concentration. The combination of dieldrin and H2O2 further pronounced these effects. TPEN, a chelator of intracellular Zn2+, significantly attenuated the synergistic increase in cell lethality induced by dieldrin and H2O2. It is, therefore, suggested that dieldrin augments the cytotoxicity of H2O2 in a Zn2+-dependent manner.  相似文献   

11.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

12.
13.
14.
15.
以三氯生为目标污染物,研究了黄铁矿催化H2O2非均相类Fenton体系对污染物的去除效果,并利用SEM、EDS等手段对天然黄铁矿进行了表征。考察了催化剂、H2O2投加量、溶液初始pH、反应时间等重要因素对催化氧化反应的影响。在H2O2投加量5 mg/L,黄铁矿用量0.1 g/L,溶液初始pH为8,反应10 min后,三氯生的去除率达90%以上。相对于传统Fenton反应,pH对本非均相催化反应的影响较小,在2~10的pH范围内,仍有较高的催化活性。利用GC-MS分析显示,三氯生降解过程能够产生包括2,4-二氯苯酚在内的多种中间产物。  相似文献   

16.
17.
Hu XY  Fan J  Zhang KL  Wang JJ 《Chemosphere》2012,87(10):1155-1160
In this work, Bi4NbxTa(1−x)O8I photocatalysts have been synthesized by solid state reaction method and characterized by powder X-ray diffraction, scanning electron microscope and UV-Vis near infrared diffuse reflectance spectroscopy. The photocatalytic activity of these photocatalysts was evaluated by the degradation of methyl orange (MO) in aqueous solutions under visible light, UV light and solar irradiation. The effects of catalyst dosage, initial pH and MO concentration on the removal efficiency were studied, and the photocatalytic reaction kinetics of MO degradation as well. The results indicated that Bi4NbxTa(1−x)O8I exhibited high photocatalytic activity for the removal of MO in aqueous solutions. For example, the removal efficiency of MO by Bi4Nb0.1Ta0.9O8I was as high as 92% within 12 h visible light irradiation under the optimal conditions: initial MO concentration of 5-10 mg L−1, catalyst dosage of 6 g L−1 and natural pH (6-8), the MO molecules could be completely degradated by Bi4Nb0.1Ta0.9O8I within 40 min under UV light irradiation, and the photodegradation efficiency reaches to 60% after 7 h solar irradiation. Furthermore, the photocatalytic degradation of Bisphenol A (BPA) was also investigated under visible light irradiation. It is found that 99% BPA could be mineralized by Bi4Nb0.1Ta0.9O8I after 16 h visible light irradiation. Through HPLC/MS, BOD, TOC, UV-Vis measurements, we determined possible degradation products of MO and BPA. The results indicated that MO was degradated into products which are easier to be biodegradable and innocuous treated, and BPA could be mineralized completely. Furthermore, the possibility for the photosensitization effect in the degradation process of MO under visible light irradiation has been excluded.  相似文献   

18.
Two surface soils contaminated with polychlorinated biphenyls (PCBs) collected from Superfund sites in the New England region of the United States, Fletcher Paints and Merrimack Industrial Metals, were evaluated for field treatment at the bench level using catalyzed H2O2 propagations (CHP—modified Fenton’s reagent). The two soils were first evaluated for the potential for in situ treatment based on two criteria: (1) temperature (<40 °C after CHP reagent addition), and (2) hydrogen peroxide longevity (>24 h). In situ CHP remediation was more applicable to the Fletcher soil, while the Merrimack soil was better suited to ex situ treatment based on temperature increases and hydrogen peroxide lifetimes. Using the highest hydrogen peroxide concentrations appropriate for in situ treatment in each soil, PCB destruction was 94% in the Fletcher soil but only 48% in the Merrimack soil. However, 98% PCB destruction was achieved in the Merrimack soil using conditions more applicable to ex situ treatment (higher hydrogen peroxide concentrations with temperatures >40 °C). Analysis of degradation products by gas chromatography/mass spectroscopy showed no detectable chlorinated degradation products, suggesting that the products of PCB oxidation were rapidly dechlorinated and degraded. The results of this research document that the two PCB-contaminated soils studied can be effectively treated using aggressive CHP conditions, and that such a detailed bench study provides important information before implementing field treatment.  相似文献   

19.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

20.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号