首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, morphology, rheological and tensile properties of low-density polyethylene/linear low-density polyethylene/thermoplastic oxidized starch (LDPE/LLDPE/TPOS) blends are studied. The blends of LDPE/LLDPE (70/30, w/w) containing 0–20 wt% TPOS in the presence of 3 wt% of PE-grafted maleic anhydride (PE-g-MA) as a compatibilizer are prepared by a twin screw extruder and then converted to appropriate thin films using an extrusion film blowing machine. Scanning electron microscopic images show that there is a relative good dispersion of oxidized starch particles in PE matrices. However, as TPOS content in the blends increases, the starch particle size increases too. The rheological analyses indicate that TPOS can decrease the elasticity and viscosity of the blends. The LDPE/LLDPE/TPOS blends show power-law behavior and as the TPOS content increases the power-law exponent (n) and consistency index (K) decrease. The ultimate tensile strength and elongation at break of the final blend films reduce, when TPOS content increases from 5 to 20 wt%. However, the required mechanical properties for packaging applications are achieved when 10 wt% oxidized starch is added, according to ASTM D4635.  相似文献   

2.
Medium density fiberboard (MDF) sanding powder is an industrial waste that has not been yet used as a raw material to produce composites. In this study, the influence of nanoclay particles on the flexural and impact strengths and the withdrawal strength of green biocomposites (based on MDF sanding powder/polyethylene/nanoclay) were investigated. For this aim, medium density fiberboard sanding dust and polyethylene were used as the lignocellulosic and thermoplastic material, respectively. In addition, maleic anhydride grafted polyethylene was used in three weight percentages (0, 3 and 6 %) as a coupling agent and compatibilizer, and Cloisite®15A was used in four weight percentages (0, 2, 4 and 6 %). To prepare samples, wood-plastic granules were produced by using a twin-screw extruder followed by the hot pressing method. The mechanical and physical properties were measured according to the CEN/TS15534:2007 and ASTM-D256 technical specifications. The results showed that the coupling agent improved the mechanical and physical properties of biocomposites; however, its effect might be affected by the nanoclay particles. Furthermore, the ultrastructure of the biocomposites was surveyed with SEM.  相似文献   

3.
Extraction and depolymerisation of chitin and chitosan from shrimp waste material was carried out using fish proteases aided process. A high deproteinization level (80 %) was recorded with an Enzyme/Substrate ratio of 10 U/mg. The demineralization of shrimp waste was completely achieved within 6 h at room temperature in HCl 1.25 M, and the residual content of calcium in chitin was below 0.01 %. The degree of N-acetylation, calculated from the 13C CP/MAS-NMR spectrum, was 85 %. The chitin obtained was converted to chitosan by N-deacetylation. X-ray diffraction patterns also indicated two characteristics crystalline peaks approximately at 10° and 20° (2θ). Chitosan was then evaluated in the treatment of unhairing effluents from the tanning industry. A result showed that chitosan as a coagulant has good performance in alkaline pH and at concentration of 0.5 g/L. Within these conditions, chitosan could decrease turbidity value, total suspended solids (89 % at 1.5 g/L), biological oxygen demand (33.3 % at 1.5 g/L) and chemical oxygen demand (58.7 % at 1.5 g/L).  相似文献   

4.
Mixtures of poly-β-(hydroxybutyrate-co-valerate) PHB-V with virgin and post-consumer low density polyethylene (LDPE) were prepared by melt mixing in proportions of 100/0, 90/10, 80/20, 70/30 and 0/100 (wt/wt%). The mixtures were analysed by infrared spectroscopy, differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), melting flow index (MFI), tensile tests, scanning electron microscopy (SEM) and biodegradation in simulated soil. The DMTA and DSC curves of post-consumer LDPE suggested that this polymer was a mixture of LDPE and linear low density polyethylene (LLDPE). Virgin and post-consumer LDPE had lower MFI than PHB-V, but the blends showed higher index as the content of LDPE increased. The addition of LDPE reduced the tensile strength and Young’s modulus of the mixtures compared with PHB-V. SEM indicated poor interfacial adhesion between PHB-V and LDPE. PHB-V degraded slow and gradually, while both LDPE showed virtually no degradation under the conditions studied. The biodegradability of the blends depended on their composition and of the type of LDPE. LDPE improved the biodegradability of the mixtures.  相似文献   

5.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

6.
The worldwide accumulation of non-degradable plastic materials, such as plastic bags, is one of the most important environmental concerns nowadays. The use of degradable materials is an option to mitigate the environmental impact generated by the consumption of plastics. One of the technologies used for the manufacture and use of degradable plastics is the use of pro-degradant additives that are incorporated in conventional plastics to promote their degradation under certain conditions. The aim of this study is to evaluate the process of oxidation, biodegradation and potential ecotoxicity of polyethylene films containing an oxo-degradable additive, according to the standard ASTM D-6954. This method establishes a procedure in which the samples are subjected to consecutive steps of accelerated oxidation, biodegradation by composting and ecotoxicity assessment. Furthermore, the effect of the presence of printing ink in the polyethylene samples with oxo-degradable additive was evaluated, and the results were compared with those obtained for samples of conventional polyethylene and polylactic acid. After 180 days of laboratory controlled composting, the samples reached the following percentages of biodegradation: polylactic acid, 41 %; printed oxo-degradable polyethylene, 32.24 %; oxo-degradable polyethylene, 25.84 %; printed polyethylene, 18.23 % and polyethylene, 13.48 %. The cellulose sample used as a control was mineralized in 58.45 %. Ecotoxicity assessment showed that the products of biodegradation of the samples tested, did not generate a negative effect on germination or development of the vegetal species studied. Under proper waste management conditions, these plastics can be used as an option to decrease the environmental impact of plastic films.  相似文献   

7.
To recycle polyurethane foam waste generated from electric appliance recycling centers for use as fuel in a gasification process, polyurethane solid refuse fuel fabricated as pellets was analyzed for the characteristics of elemental composition, proximate analysis, heating value, and thermo-gravimetric testing. It has a high heating value of 29.06 MJ/kg with a high content of combustibles, which could be feasibly used in any thermal process. However, the nitrogen content, of up to 7 %, was comparably higher than for other fuels such as coal, biomass, and refuse-derived fuel, and may result in the emission of nitrogenous pollutant gases of HCN and NH3. By conducting gasification experiments on polyurethane solid refuse fuel in a fixed-bed reactor, a syngas with a heating value of 9.76 kJ/m3 and high content of both H2 and CO were produced with good gasification efficiency; carbon conversion 54 %, and cold gas efficiency 60 %. The nitrogenous pollutant gases in syngas were measured at the concentrations of 160 ppm hydrogen cyanide and 40 ppm ammonia, which may have to be reduced using proper cleaning technologies prior to the commercialization of gasification technology for polyurethane waste.  相似文献   

8.
This research studied the characteristics of dried sewage sludge using TGA to co-fire dried sewage sludge with coal in power plants. The sewage sludges that were discharged from Daejeon, Korea were dried and examined fundamental properties to use them as a fuel. Also, the properties of bituminous coal and wood pellet, which are used in domestic coal power plants, were analyzed and compared with them of sewage sludges and non-isothermal analyses of dried sewage sludges were performed at the heating rates of 5, 10, 20, and 30C /min using TG analyzer to investigate the basic combustion characteristics. As a results of these TGA/DTG analyses, sewage sludges showed its primary peak at the temperature of 250–500?°C, which overlapped with main peak of wood and secondary peak at around 500–600?°C, which overlapped with main peak of coals. Also for the interpretation by Friedman method, the activation energies in the section of highest weight loss were 525.16 kJ/mole for dried digested sewage sludge, 544.88 kJ/mole for dried excess sewage sludge, 203.86 kJ/mole for wood pellet and 146.4585 kJ/mole for bituminous coal. The reaction orders for dried digested excess sewage sludge, dried excess sewage sludge, wood pellet and bituminous coal were 28.775, 24.319, 18.398 and 9.1005, respectively, and the frequency factors were 5.89?\(\times \hspace{0.17em}\)1028, 1.65?\(\times \hspace{0.17em}\)1024,, 9.59?\(\times \hspace{0.17em}\)1016 and 1.77?\(\times \hspace{0.17em}\)108 for each, respectively.  相似文献   

9.
In this study, anaerobic co-digestion of the tannery waste water (TWW) and tannery solid waste (TSW) with four TWW to TSW mixing ratios (100:0, 75:25, 50:50 and 25:75) was carried out using semi-continuous two-phase anaerobic sequencing batch reactor system under mesophilic temperature (38?±?2 °C). During the experimental study, effluents resulted from previously optimized acidogenic reactors were used to feed subsequent methanogenic reactors and then operated at hydraulic retention time (HRT) of 20, 15 and 10 days and equivalent organic loading rate. The findings revealed that methanogenic reactor of 50:50 (TWW:TSW) treating the effluent from previously optimized acidogenic step exhibits best process performances in terms of daily biogas (415 ml/day), methane production (251 ml/day), methane content (60.5%) and COD removal efficiency (75%) when operated at HRT of 20 days. Process stability of methanogenic step also evaluated and the obtained results showed suitable pH (6.8), no VFA accumulation, i.e., VFA/Alkalinity (0.305), alkalinity (3210 mgCaCO3/l) and ammonia (246 mg/l with in optimum operating range). In general, improved process stability as well as performance was achieved during anaerobic co-digestion of TWW with TSW compared to mono-digestion of TWW.  相似文献   

10.
In this study, poly(l-lactide) (PLA) films were fabricated by melt processing and the plasticizing effect of hexadecyl lactate (HL) (0, 5, 7.5, 10, and 12.5 wt% on PLA were investigated by scanning electron microscopy (SEM), differential scanning calorimetry, thermogravimetric analysis, tensile, transparency, and water vapor permeability tests. The SEM analysis revealed that PLA with 10 wt% HL appeared uniform with extra small bumps, confirmed the interaction between PLA and HL. The thermal analysis revealed a glass transition temperature of 57.4 °C for neat PLA film, but the addition of HL elicited a decrease in the temperature of the peak (43.8 °C). The incorporation of plasticizer into PLA resulted in the increase of elongation at break, as well as the decrease of tensile strength and tensile modulus. Even though a decrease in transparency was recorded, the PLA/HL blend films appeared transparent by visually observation. The water vapor permeability of PLA/HL blend films increased with the increase of HL. The PLA/HL blend films could effectively extend the shelf-life of fresh-cut pears as the commercial low density polyethylene films. The results indicated that the properties of PLA films can be modified with the addition of HL and PLA/HL blend films could serve as an alternative as food packaging materials to reduce environmental problems associated with synthetic packaging films.  相似文献   

11.
The objective of the study was to investigate the suitability of using sorghum bran in recycled low density polyethylene (R-LDPE) composites manufacturing. In response to the disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low density polyethylene and sorghum bran of different loadings (5, 10, 15 and 20 wt%) were prepared by melt compounding and compression molding. The effects of sorghum bran loadings on the mechanical, thermal, water absorption, swelling and crystalline properties of the composites were determined. Characterization of composites was carried out using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermo gravimetric (TGA/DTG) and mechanical analyses. It was found that increasing fiber loadings resulted to increased moduli and tensile strength while hardness was decreased. XRD indicated that fiber addition to R-LDPE did not change characteristic peak position. DSC results showed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, showing higher crystallization rates for R-LDPE. The results obtained confirmed that sorghum bran particles showed some potential as a good reinforcement in polymer matrix composites and indicate its thermal stability for possibly future composite applications.  相似文献   

12.
The biodegradability of polylactide (PLA) and gelatinized starches (GS) blend films in the presence of compatibilizer was investigated under controlled soil burial conditions. Various contents (0–40 wt%) of corn and tapioca starches were added as fillers; whereas, different amounts of methylenediphenyl diisocyanate (MDI) (0–2.5 wt%) and 10 wt% based on PLA content of polyethylene glycol 400 (PEG400) were used as a compatibilizer and a plasticizer, respectively. The biodegradation process was followed by measuring changes in the physical appearance, weight loss, morphological studies, and tensile properties of the blend films. The results showed that the presence of small amount of MDI significantly increased the tensile properties of the blends compared with the uncompatibilized blends. This is attributed to an improvement of the interfacial interaction between PLA and GS phases, as evidenced by the morphological results. For soil burial testing, PLA/GS films with lower levels (1.25 wt%) of MDI had less degradation; in contrast, at high level of MDI, their changes of physical appearance and weight loss tended to increase. These effects are in agreement with their water absorption results. Furthermore, biodegradation rates of the films were enhanced with increasing starch contents, while mechanical performances were decreased.  相似文献   

13.
Irradiation cross-linked polyethylene (PEX) and irradiation cross-linked polyethylene with carbon black filler (CB-PEX) are two types of scraps, generated in electric cable production. Their pyrolysis is studied in this work using instrumental TG\DSC\FTIR techniques and kinetic analysis. The experiments are performed at a constant heating rate of 10 °C/min in nitrogen flow at atmospheric pressure. It is found that the main pyrolysis stage is in the temperature range of 395–503 °C for PEX, and in range of 408–515 °C for CB-PEX. In the main pyrolysis stage, CB-PEX requires more external heat than PEX does. Olefins are the major products of pyrolysis for both materials, but they are quite different in their composition and molecular weight distribution. PEX can be converted almost quantitatively into volatile compounds. CB-PEX has a stronger coking tendency, as well as a larger residue composed of carbon black.  相似文献   

14.
The concentration of hardly biodegradable humic substances in sludge would relatively increase after anaerobic digestion due to the degradation of other organic substances. Thus, extracting humic substances from digested sludge as a liquid organic fertilizer was tested using alkaline treatment and ultrafiltration, and the dewaterability of the residual sludge was also tested. The results showed that the contents of humic acids and fulvic acids in digested sludge were 16.4 mg/g total solids and 88.9 mg/g total solids, respectively, and most of the humic acids had a molecular weight higher than 50 kDa. Hence, the membrane with a molecular weight cut-off of 50 kDa was used for humic acids recovery from the centrifugation supernatant after alkaline sludge disintegration with an optimum NaOH dose of 0.1 mol/L. Under these conditions, the total concentration of humic acids and fulvic acids was 4239 mg/L in the retention solution, which can be further concentrated and processed for liquid fertilizer. The total recovery rate of sludge humic acids and fulvic acids was about 25 %. The dewatering performance of the residual sludge was better than that of the untreated sludge when the residual sludge was diluted to a water content of 95–98 % and then conditioned with polyacrylamide at a dose of 10–30 mg/L.  相似文献   

15.
The objective of this study was to evaluate some of the properties of experimental composite panels manufactured from waste packaging materials without using any additional binders. Particles from three types of materials, namely Tetra-Pak, food packaging films (FPEF) as recycled stretch wraps, and candy polyethylene wrappers (CPEW) were used at different ratios in the panels at a target density of 900 kg/m3. Modulus of rupture (MOR), screw holding strength and dimensional stability in the form of thickness swelling and water absorption of the panels were determined according to European (EN) standards. Based on the findings in this work it was determined that the ratio of different raw materials significantly influenced overall properties of the samples. The highest MOR value of 15.5 MPa was determined for the samples having 40 % Tetra-Pak and 60 % CPEW particles. Modulus of rupture values of the panels decreased with decreasing content of CPEW in the samples. The increased content of Tetra-Pak particles in the samples also resulted in reduction of their strength characteristics and dimensional stability. Properties of the samples considered in this work satisfied minimum requirements of typical particleboard stated in EN standards. It appears that such waste material would have potential to be used as raw material for value-added composite production using no adhesive in the panels and, therefore, such panels would possibly create significant ecological impact as green product.  相似文献   

16.
This study investigated sludge granulation inoculated with various mixtures of aerobic and anaerobic sludge at low dissolved oxygen (DO; 0.3–0.6 mg/l) or aerobic (>2.5 mg/l) conditions in four parallel flow reactor systems. Formation of high-density coupled granules was achieved in the reactor system inoculated with anaerobic and aerobic sludge seeds (1:1 mass ratio) at low DO concentrations, with a mean size of 2.5 mm after only 27 days of cultivation. The highest ratio of protein (PN) to polysaccharide (PS; 3.3) was observed for the coupled sludge compared to granules cultivated under aerobic conditions. The PN/PS ratio correlated well with high hydrophobicity, low sludge volumetric index, and compact granular structure. Activity tests of the specific anaerobic and aerobic biomass confirmed that anaerobes and aerobes coexisted in the same coupled granule. Based on the optical microscopic and SEM observations, the process of coupled granule formation was proposed.  相似文献   

17.
Thermocatalytic degradation of high density polyethylene (HDPE) was carried out using acid activated fire clay catalyst in a semi batch reactor. Thermal pyrolysis was performed in the temperature range of 420–500 °C. The liquid and gaseous yields were increased with increase in temperature. The liquid yield was obtained 30.1 wt% with thermal pyrolysis at temperature of 450 °C, which increased to 41.4 wt% with catalytic pyrolysis using acid activated fire clay catalyst at 10 wt% of catalyst loading. The composition of liquid products obtained by thermal and catalytic pyrolysis was analyzed by gas chromatography-mass spectrometry and compounds identified for catalytic pyrolysis were mainly paraffins and olefins with carbon number range of C6–C18. The boiling point was found in the range of commercial fuels (gasoline, diesel) and the calorific value was calculated to be 42 MJ/kg.  相似文献   

18.
Polycarbonate (PC) pellets were subjected to dilute aqueous ammonia solution under hydrothermal conditions in a semi-batch reactor at temperatures ranging from 433 to 463 K and at a pressure of 10 MPa. The PC pellets were almost completely converted to bisphenol A (BPA). During an initial certain period, referred to as an induction time, neither BPA nor total organic carbon in solution were detected, and the BPA yield increased with time. The monomer yield was well represented by a surface reaction model, two-thirds-order reaction with respect to the mass of unreacted PC. The overall rate constant of the reaction in 0.6 mol/kg aqueous ammonia solution at 433 K was about 15 times greater than that in 0.6 mol/kg NaOH solution. The rate constant at 433 K was proportional to the ammonia or NaOH concentration. There was a correlation between the induction time and temperature, as well as the ammonia or NaOH concentration. By carrying out the reaction in aqueous mixtures of (NH4)2SO4 and NaOH at various concentrations of NaOH, ammonia was confirmed not to function as an alkaline reagent, but as a nucleophile reagent.  相似文献   

19.
This study was aimed to investigate the biodegradation characteristics of organic matters in swine carcasses. The lysimeters were simulated with different initial operating conditions: 30 % volumetric moisture content and no sludge addition for lysimeter A (control), 30 % volumetric moisture content and anaerobic sludge addition for lysimeter B, and 40 % volumetric moisture content and anaerobic sludge addition for lysimeter C. The degradation efficiency (18.4 %) of lysimeter B was higher than that (15.2 %) of lysimeter A due to anaerobic sludge addition. Lysimeter B showed higher CH4 yield (15.6 L/kg VS) and CH4 production rate (0.41 L/kg VS days) compared to lysimeter A by 31 % and 14 %, respectively. In addition, the degradation efficiency improved from 18.4 % (lysimeter B) to 26.3 % (lysimeter C) by increasing volumetric moisture content. The CH4 yield (22.9 L/kg VS) and CH4 production rate (0.68 L/kg VS days) of lysimeter C were higher than those of lysimeter B, respectively. Total organic carbon (TOC) removed in lysimeter C was converted to leachate (20.3 %) and gas (6.0 %), whose values were higher than those of lysimeter A and B. These results demonstrated that the proper control of initial operating conditions could accelerate the anaerobic degradation of organic matters in swine carcasses.  相似文献   

20.
The aim of this study was to produce renewable energy from exhausted coffee residue, which is a form of biomass. As coffee preference continues to increase, the importation of coffee beans has been increasing sharply. However, the amount of coffee that is actually consumed is only about 0.2% of coffee beans, while the spent coffee beans are discarded in the form of exhausted coffee residue. Hydrothermal carbonization is a method of producing an improved fuel from renewable energy sources by changing the physical and chemical properties of biochars. Biochars were obtained from a variety of reaction temperatures during hydrothermal carbonization and analyzed using elemental analysis, ultimate analysis, and calorific value measurement. The atomic C/O and C/H ratios of all obtained biochars decreased and were found to be similar to those of lignite and sub-bituminous coal. The highest energy recovery efficiency of biochar indicates that the optimum reaction temperature for hydrothermal carbonization was between 210 and 240 °C, which produced biochars with calorific value of approximately 26–27 MJ/kg. The spectra of biochars obtained from Fourier transform infrared spectroscopy (FTIR) showed fewer C–O and aliphatic C–H functional groups, but more carbonyl C=O functional groups and aliphatic CH x groups. The results of this study indicate that hydrothermal carbonization can be used as an effective means to generate highly energy-efficient renewable fuel resources from coffee residue. The thermogravimetric analysis provided the changing combustion characteristics due to increased fixed carbon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号