首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concerns over exposure to mercury have motivated the exploration of cost-effective, rapid, and reliable method for monitoring Hg2 + in the environment. Recently, surface-enhanced Raman scattering (SERS) has become a promising alternative method for Hg2 + analysis. SERS is a spectroscopic technique which combines modern laser spectroscopy with the optical properties of nano-sized noble metal structures, resulting in substantially increased Raman signals. When Hg2 + is in a close contact with metallic nanostructures, the SERS effect provides unique structural information together with ultrasensitive detection limits. This review introduces the principles and contemporary approaches of SERS-based Hg2 + detection. In addition, the perspective and challenges are briefly discussed.  相似文献   

2.
A bacterium strain Y3,capable of efficiently degrading pendimethalin,was isolated from activated sludge and identified as Bacillus subtilis according to its phenotypic features and 16 S rRNA phylogenetic analysis.This strain could grow on pendimethalin as a sole carbon source and degrade 99.5%of 100 mg/L pendimethalin within 2.5 days in batch liquid culture,demonstrating a greater efficiency than any other reported strains.Three metabolic products,6-aminopendimethalin,5-amino-2-methyl-3-nitroso-4-(pentan-3-ylamino) benzoic acid,and 8-amino-2-ethyl-5-(hydroxymethyl)-1,2-dihydroquinoxaline-6-carboxylic acid,were identified by HPLC-MS/MS,and a new microbial degradation pathway was proposed.A nitroreductase catalyzing nitroreduction of pendimethalin to 6-aminopendimethalin was detected in the cell lysate of strain Y3.The cofactor was nicotinamide adenine dinucleotide phosphate(NADPH) or more preferably nicotinamide adenine dinucleotide(NADH).The optimal temperature and pH for the nitroreductase were 30℃ and 7.5,respectively.Hg~(2+),Ni~(2+),Pb~(2+),Co~(2+),Mn~(2+) Cu~(2+),Ag~+,and EDTA severely inhibited the nitroreductase activity,whereas Fe~(2+),Mg~(2+),and Ca~(2+) enhanced it.This study provides an efficient pendimethalin-degrading microorganism and broadens the knowledge of the microbial degradation pathway of pendimethalin.  相似文献   

3.
The elemental mercury removal abilities of three different zeolites (NaA, NaX, HZSM-5) impregnated with iron(III) chloride were studied on a lab-scale fixed-bed reactor. X-ray diffraction, nitrogen adsorption porosimetry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD) analyses were used to investigate the physicochemical properties. Results indicated that the pore structure and active chloride species on the surface of the samples are the key factors for physisorption and oxidation of Hg0, respectively. Relatively high surface area and micropore volume are beneficial to efficient mercury adsorption. The active Cl species generated on the surface of the samples were effective oxidants able to convert elemental mercury (Hg0) into oxidized mercury (Hg2 +). The crystallization of NaCl due to the ion exchange effect during the impregnation of NaA and NaX reduced the number of active Cl species on the surface, and restricted the physisorption of Hg0. Therefore, the Hg0 removal efficiencies of the samples were inhibited. The TPD analysis revealed that the species of mercury on the surface of FeCl3–HZSM-5 was mainly in the form of mercuric chloride (HgCl2), while on FeCl3–NaX and FeCl3–NaA it was mainly mercuric oxide (HgO).  相似文献   

4.
The objective of this study was to understand toxicity of mixture of nanoparticles (NPs) (ZnO and TiO2) and their ions to Escherichia coli. Results indicated the decrease in percentage growth of E. coli with the increase in concentration of NPs both in single and mixture setups. Even a small concentration of 1 mg/L was observed to be significantly toxic to E. coli in binary mixture setup (exposure concentration: 1 mg/L ZnO and 1 mg/L TiO2; 21.15% decrease in plate count concentration with respect to control). Exposure of E. coli to mixture of NPs at 1000 mg/L (i.e., 1000 mg/L ZnO and 1000 mg/L TiO2) resulted in 99.63% decrease in plate count concentration with respect to control. Toxic effects of ions to E. coli were found to be lesser than their corresponding NPs. The percentage growth reduction was found to be 36% for binary mixture of zinc and titanium ions at the highest concentration (i.e., 803.0 mg/L Zn and 593.3 mg/L Ti where ion concentrations are equal to the Zn ions present in 1000 mg/L ZnO NP solution and Ti+ 4 ions present in 1000 mg/L TiO2 NP solution). Nature of mixture toxicity of the two NPs to E. coli was found to be antagonistic. The alkaline phosphatase (Alp) assay indicated that the maximum damage was observed when E. coli was exposed to 1000 mg/L of mixture of NPs. This study tries to fill the knowledge gap on information of toxicity of mixture of NPs to bacteria which has not been reported earlier.  相似文献   

5.
Removal of Pb~(2+)and biodegradation of organophosphorus have been both widely investigated respectively. However, bio-remediation of both Pb~(2+)and organophosphorus still remains largely unexplored. Bacillus subtilis FZUL-33, which was isolated from the sediment of a lake, possesses the capability for both biomineralization of Pb~(2+)and biodegradation of acephate. In the present study, both Pb~(2+)and acephate were simultaneously removed via biodegradation and biomineralization in aqueous solutions.Batch experiments were conducted to study the influence of p H, interaction time and Pb~(2+)concentration on the process of removal of Pb2+. At the temperature of 25°C, the maximum removal of Pb~(2+)by B. subtilis FZUL-33 was 381.31 ± 11.46 mg/g under the conditions of p H 5.5, initial Pb~(2+)concentration of 1300 mg/L, and contact time of 10 min. Batch experiments were conducted to study the influence of acephate on removal of Pb~(2+)and the influence of Pb2+on biodegradation of acephate by B. subtilis FZUL-33. In the mixed system of acephate–Pb2+, the results show that biodegradation of acephate by B. subtilis FZUL-33 released PO43+, which promotes mineralization of Pb2+. The process of biodegradation of acephate was affected slightly when the concentration of Pb2+was below 100 mg/L. Based on the results, it can be inferred that the B. subtilis FZUL-33 plays a significant role in bio-remediation of organophosphorus-heavy metal compound contamination.  相似文献   

6.
Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100 mg/L of indole within 24 hr. It still harbored relatively high indole degradation capacity within pH 4–9 and temperature 25°C–35°C. Experiments also showed that some heavy metals such as Mn2 +, Pb2 + and Co2 + did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography–mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.  相似文献   

7.
Experiments were conducted in a fixed-bed reactor that contained a commercial catalyst, V2O5–WO3/TiO2, to investigate mercury oxidation in the presence of NO and O2. Mercury oxidation was improved by NO, and the efficiency was increased by simultaneously adding NO and O2. With NO and O2 pretreatment at 350°C, the catalyst exhibited higher catalytic activity for Hg0 oxidation, whereas NO pretreatment did not exert a noticeable effect. Decreasing the reaction temperature boosted the performance of the catalyst treated with NO and O2. Although NO promoted Hg0 oxidation at the very beginning, excessive NO counteracted this effect. The results show that NO plays different roles in Hg0 oxidation; NO in the gaseous phase may directly react with the adsorbed Hg0, but excessive NO hinders Hg0 adsorption. The adsorbed NO was converted into active nitrogen species (e.g., NO2) with oxygen, which facilitated the adsorption and oxidation of Hg0. Hg0 was oxidized by NO mainly by the Eley–Rideal mechanism. The Hg0 temperature-programmed desorption experiment showed that weakly adsorbed mercury species were converted to strongly bound ones in the presence of NO and O2.  相似文献   

8.
The presence of toxic mercury (II) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms. Therefore, detection of mercury (II) in water is very much crucial and several researches are going on in this topic. Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water. The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing. In this study, we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (II) in water. A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg2+ in water. The well-distributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg2+ sensing activity in water owing to their great electronic and optical properties. The binary MOF composite (2) i.e., the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg2+. The sensor also exhibited excellent performance for mercury (II) detection in real water samples. The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.  相似文献   

9.
Protons(H+)as well as different major and trace elements may inhibit cadmium(Cd)uptake in aquatic organisms and thus alleviate Cd toxicity.However,little is known about such interactions in soil organisms.In this study,the independent effects of the cations calcium(Ca2+),magnesium(Mg2+),potassium(K+),H+and zinc(Zn2+)on Cd toxicity were investigated with 5-day long barley root elongation tests in nutrient solutions.The tested concentrations of selected cations and trace metal ions were based on the ranges that occur naturally in soil pore water.The toxicity of Cd decreased with increasing activity of Ca2+,Mg2+,H+and Zn2+,but not K+.Accordingly,conditional binding constants were obtained for the binding of Cd2+,Ca2+,Mg2+,H+,and Zn2+ with the binding ligand:log KCdBL5.19,logKCaBL2.87,logKMgBL2.98,logKHBL5.13 and logKZnBL5.42,respectively.Furthermore,it was calculated that on average 29% of the biotic ligand sites needed to be occupied by Cd to induce a 50% decrease in root elongation.Using the estimated constants,a biotic ligand model was successfully developed to predict the Cd toxicity to barley root elongation as a function of solution characteristics.The feasibility and accuracy of its application for predicting Cd toxicity in soils were discussed.  相似文献   

10.
降水中汞的赋存形态   总被引:5,自引:2,他引:3  
在北京市不同地点和不同时期采集降水样品 36个 .分析结果表明 ,汞易形成相对稳定的络合态汞 ,除 Hg0(w) 外各形态汞含量均表现为采暖期大于非采暖期 .降水中各形态汞的含量和百分比按大小排序 ,经统计检验 ,在非采暖期水相中为 Hgre(w)>[Hg0(w),Hg2+(w)],颗粒态汞为 Hgre(p)>Hg2+(p)>Hg0(p);在采暖期水相中均为 Hgre(w)>Hg2+(w)>Hg0(w),颗粒态汞为 Hgre(p)>[Hg2+(p),Hg0(p)].在非采暖期颗粒态汞含量及百分比 HgT(p)>溶解态汞 HgT(w),在采暖期颗粒态汞和溶解态汞没有明显差异 .小于 0.45μm颗粒吸附的汞 Hg0相对较多 ,Hg2+形态汞较少 ,水溶液中 Hg0 形态汞少 ,Hg2+形态汞多 ,表明 Hg0 形态汞更易在微小颗粒物上吸附 ,而 Hg2+形态汞相当部分可以保留在水溶液中 .  相似文献   

11.
This study investigated the interaction between Cu2 + and nano zero-valent iron (NZVI) coated with three types of stabilizers (i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu2 + uptake, colloidal stability and mobility of surface-modified NZVI (SM-NZVI) in the presence of Cu2 +. The uptake of Cu2 + by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu2 +, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu2 +. The presence of Cu2 + exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu2 + caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu2 + complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu2 + in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu2 + may be contributing to this straining effect.  相似文献   

12.
The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg0 were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett-Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mnx+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature.  相似文献   

13.
A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km = 8.18 mg/L, and Vmax = 0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2 +, reversible competition with Cd2 +, and irreversible inhibition by Pb2 +. Ca2 + promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment.  相似文献   

14.
As a special biofilm structure, microbial attachment is believed to play an important role in the granulation of aerobic granular activated sludge (AGAS). This experiment was to investigate the biological effect of Ca2 +, Mg2 +, Cu2 +, Fe2 +, Zn2 +, and K+ which are the most common ions present in biological wastewater treatment systems, on the microbial attachment of AGAS and flocculent activated sludge (FAS), from which AGAS is always derived, in order to provide a new strategy for the rapid cultivation and stability control of AGAS. The result showed that attachment biomass of AGAS was about 300% higher than that of FAS without the addition of metal ions. Different metal ions had different effects on the process of microbial attachment. FAS and AGAS reacted differently to the metal ions as well, and in fact, AGAS was more sensitive to the metal ions. Specifically, Ca2 +, Mg2 +, and K+ could increase the microbial attachment ability of both AGAS and FAS under appropriate concentrations, Cu2 +, Fe2 +, and Zn2 + were also beneficial to the microbial attachment of FAS at low concentrations, but Cu2 +, Fe2 +, and Zn2 + greatly inhibited the attachment process of AGAS even at extremely low concentrations. In addition, the acylated homoserine lactone (AHL)-based quorum sensing system, the content of extracellular polymeric substances and the relative hydrophobicity of the sludges were greatly influenced by metal ions. As all these parameters had close relationships with the microbial attachment process, the microbial attachment may be affected by changes of these parameters.  相似文献   

15.
Pollution by various heavy metals as environmental stress factors might affect bacteria. It was established that iron (Fe(III)), manganese (Mn(II)) and copper (Cu(II)) ion combinations caused effects on Enterococcus hirae that differed from the sum of the effects when the metals were added separately. It was shown that the Cu2 +–Fe3 + combination decreased the growth and ATPase activity of membrane vesicles of wild-type E. hirae ATCC9790 and atpD mutant (with defective FoF1-ATPase) MS116. Addition of Mn2 +–Fe3 + combinations within the same concentration range had no effects on growth compared to control (without heavy metals). ATPase activity was increased in the presence of Mn2 +–Fe3 +, while together with 0.2 mmol/L N,N′-dicyclohexylcarbodiimide (DCCD), ATPase activity was decreased compared to control (when only 0.2 mmol/L DCCD was present). These results indicate that heavy metals ion combinations probably affect the FOF1-ATPase, leading to conformational changes. Moreover the action may be direct or be mediated by environment redox potential. The effects observed when Fe3 + was added separately disappeared in both cases, which might be a result of competing processes between Fe3 + and other heavy metals. These findings are novel and improve the understanding of heavy metals ions effects on bacteria, and could be applied for regulation of stress response patterns in the environment.  相似文献   

16.
A catalyst composed of manganese oxides supported on titania(MnO_x/TiO_2) synthesized by a sol–gel method was selected to remove nitric oxide and mercury jointly at a relatively low temperature in simulated flue gas from coal-fired power plants. The physico-chemical characteristics of catalysts were investigated by X-ray fluorescence(XRF), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS) analyses, etc. The effects of Mn loading,reaction temperature and individual flue gas components on denitration and Hg~0 removal were examined. The results indicated that the optimal Mn/Ti molar ratio was 0.8 and the best working temperature was 240°C for NO conversion. O_2 and a proper ratio of [NH_3]/[NO]are essential for the denitration reaction. Both NO conversion and Hg~0 removal efficiency could reach more than 80% when NO and Hg~0 were removed simultaneously using Mn0.8 Tiat 240°C.Hg~0 removal efficiency slightly declined as the Mn content increased in the catalysts. The reaction temperature had no significant effect on Hg~0 removal efficiency. O_2 and HCl had a promotional effect on Hg~0 removal. SO2 and NH_3were observed to weaken Hg~0 removal because of competitive adsorption. NO first facilitated Hg~0 removal and then had an inhibiting effect as NO concentration increased without O_2, and it exhibited weak inhibition of Hg~0 removal efficiency in the presence of O_2. The oxidation of Hg~0 on Mn O x/TiO_2 follows the Mars–Maessen and Langmuir–Hinshelwood mechanisms.  相似文献   

17.
Experiments were conducted in a fixed-bed reactor containing a commercial V2O5/WO3/TiO2 catalyst to investigate mercury oxidation in the presence of HCl and O2. Mercury oxidation was improved significantly in the presence of HCl and O2, and the Hg0 oxidation efficiencies decreased slowly as the temperature increased from 200 to 400°C. Upon pretreatment with HCl and O2 at 350°C, the catalyst demonstrated higher catalytic activity for Hg0 oxidation. Notably, the effect of pretreatment with HCl alone was not obvious. For the catalyst treated with HCl and O2, better performance was observed with lower reaction temperatures. The results showed that both HCl and Hg0 were first adsorbed onto the catalyst and then reacted with O2 following its adsorption, which indicates that the oxidation of Hg0 over the commercial catalyst followed the Langmuir–Hinshelwood mechanism. Several characterization techniques, including Hg0 temperature-programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS), were employed in this work. Hg-TPD profiles showed that weakly adsorbed mercury species were converted to strongly bound species in the presence of HCl and O2. XPS patterns indicated that new chemisorbed oxygen species were formed by the adsorption of HCl, which consequently facilitated the oxidation of mercury.  相似文献   

18.
High-surface-area mesoprous powders of γ-Al2O3 doped with Cu2 +, Cr3 +, and V3 + ions were prepared via a modified sol–gel method and were investigated as catalysts for the oxidation of chlorinated organic compounds. The composites retained high surface areas and pore volumes comparable with those of undoped γ-Al2O3 and the presence of the transition metal ions enhanced their surface acidic properties. The catalytic activity of the prepared catalysts in the oxidation of 1,2-dichloroethane (DCE) was studied in the temperature range of 250–400°C. The catalytic activity and product selectivity were strongly dependent on the presence and the type of dopant ion. While Cu2 +- and Cr3 +-containing catalysts showed 100% conversion at 300°C and 350°C, V3 +-containing catalyst showed considerably lower conversion. Furthermore, while the major products of the reactions over γ-alumina were vinyl chloride (C2H3Cl) and hydrogen chloride (HCl) at all temperatures, Cu- and Cr-doped catalysts showed significantly stronger capability for deep oxidation to CO2.  相似文献   

19.
Elemental mercury (Hg^0) in flue gases can be efficiently captured by mercury chloride (HgCl2) solution. However, the absorption behaviors and the influencing effects are still poorly understood. The mechanism of Hg^0 absorption by HgCl2 and the factors that control the removal were studied in this paper. It was found that when the mole ratio of Cl^- to HgCl2 is 10:1, the Hg^0 removal efficiency is the highest. Among the main mercury chloride species, HgCl3^- is the most efficient ion for Hg^0 removal in the HgCl2 absorption system when moderate concentrations of chloride ions exist. The Hg^0 absorption reactions in the aqueous phase were investigated computationaIIy using Moller-Plesset perturbation theory. The calculated Gibbs free energies and energy barriers are in excellent agreement with the results obtained from experiments. In the presence of SO3^2- and SO2, Hg^2+ reduction occurred and Hg^0 removal efficiency decreased. The reduced Hg^0 removal can be controlled through increased chloride concentration to some degree. Low pH value in HgCla solution enhanced the Hg^0 removal efficiency, and the effect was more significant in dilute HgCl2 solutions. The presence of SO4^2- and NO3^- did not affect Hg^0 removal by HgCl2.  相似文献   

20.
Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu2 +) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu2 + sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu2 + sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu2 + sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu2 + (R2 > 0.97), and it was still good under different pH values (R2 > 0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu2 + sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu2 + sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu2 + sorption. It indicated that aluminum dissolution is associated with non-specific sorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号