首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The volatilization of DBCP from soils, as affected by the soil characteristics and application techniques, was studied in a laboratory experiment. The volatilization rate of DBCP applied in water was higher from sandy and silty loam soils than from clay soil. Water added after DBCP application acted as a soil cover, decreasing the volatilization rate. The results obtained with DBCP application in hexane to air‐dry soils, indicate that adsorption could be an important factor in reducing the volatilization losses.

Diffusion coefficients were calculated from the volatilization parameters, by using a simplified relationship between volatilization losses and diffusion through soil.  相似文献   

2.
Ammonia (NH3) emission from livestock manures used in agriculture reduces N uptake by crops and negatively impacts air quality. This laboratory study was conducted to evaluate NH3emission from different livestock manures applied to two soils: Candler fins sand (CFS; light-textured soil, pH 6.8 and field capacity soil water content of 70 g kg? 1) from Lake Alfred, Florida and Ogeechee loamy sand (OLS; medium-textured soil, pH 5.2 and field capacity soil water content of 140 g kg? 1) from Savannah, Georgia. Poultry litter (PL) collected from a poultry farm near Douglas, Georgia, and fresh solid separate of swine manure (SM) collected from a farm near Clinton, North Carolina were used. Each of the soil was weighed in 100 g sub samples and amended with either PL or SM at rates equivalent to either 0, 2.24, 5.60, 11.20, or 22.40 Mg ha? 1 in 1L Mason jars and incubated in the laboratory at field capacity soil water content for 19 days to monitor NH3 volatilization. Results indicated a greater NH3 loss from soils amended with SM compared to that with PL. The cumulative NH3volatilization loss over 19 days ranged from 4 to 27% and 14 to 32% of total N applied as PL and SM, respectively. Volatilization of NH3 was greater from light-textured CFS than that from medium-textured OLS. Volatilization loss increased with increasing rates of manure application. Ammonia volatilization was lower at night time than that during the day time. Differences in major factors such as soil water content, temperature, soil type and live stock manure type influenced the diurnal variation in volatilization loss of NH3 from soils. A significant portion (> 50%) of cumulative NH3 emission over 19 d occurred during the first 5–7 d following the application of livestock manures. Results of this study demonstrate that application of low rates of livestock manure (≤ 5.60 Mg ha? 1) is recommended to minimize NH3 emissions.  相似文献   

3.
Abstract

The effects of temperatures and solar radiation on the dissipation of 14C‐p,p'‐DDT from a loam soil was studied by quantifying volatilization, mineralization and binding. The major DDT loss occurred by volatilization, which was 1.8 times more at 45oC than at ambient temperature (30°C). Mineralization of DDT slowly increased with time but it decreased slightly with increase in temperature. Binding of DDT to soil was found to be less at higher temperatures (35 and 45°C) as compared to ambient temperature. Degradation of DDT to DDE was faster at higher temperatures.

Exposure of non‐sterilized and sterilized soils treated with 14C‐DDT to sunlight in quartz and dark tubes for 6 weeks resulted in significant losses. Volatilization and mineralization in quartz tubes were more as compared to dark tubes. The volatilized organics from the quartz tubes contained larger amounts of p,p'‐DDE than the dark tubes. Further, higher rates of volatilization were found in non‐sterilized soils than in sterilized soils. The results suggest that faster dissipation of DDT from soil under local conditions relates predominantly to increased volatilization as influenced by high temperature and intense solar radiation.  相似文献   

4.
Effect of a cationic surfactant on the volatilization of PAHs from soil   总被引:1,自引:0,他引:1  

Purpose

Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil.

Materials and methods

The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid?Cvapor and solid?Cvapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis.

Results and discussion

DDPB affects both liquid?Cvapor and solid?Cvapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas?Cliquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas?Cliquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid?Cvapor volatilization of PAHs.

Conclusions

The overall effect of the two simultaneous effects of DDPB on liquid?Cvapor and solid?Cvapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.  相似文献   

5.
The stability of kerosene in soils as affected by volatization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50-day period. Seven major compounds ranging between C9 and C15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions — air-dairy soil and no subsequent addition of water—excluded both biodegradative and leaching. losses.The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (>4.5 μm) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.  相似文献   

6.
Volatilization may represent a major dissipation pathway for pesticides applied to soils or crops. A field experiment (September, 2002), consisted in volatilization fluxes measurements during 6 days, covering the periods before and after soil incorporation carried out 24 h after trifluralin spraying on bare soil. Evolution of concentration in soil was measured during 101 days, together with soil physical and meteorological variables. Volatilization fluxes were very high immediately after application (1900 ng m(-2) s(-1)), decreased down to 100 ng m(-2) s(-1) in the following 24 h. Soil incorporation strongly abated trifluralin concentration in the air. 99% of the total volatilization losses recorded over the 6 days following application occurred before incorporation. Volatilization fluxes evidenced a diurnal cycle driven by environmental conditions. Soil trifluralin residues could still be quantified 101 days after application. Our results highlight the caution required when using soil degradation half-life values in the field for volatile compounds.  相似文献   

7.
14C-terbuthylazine was applied to three Brazilian soils in closed aerated laboratory microcosms, both under standardized and under natural Brazilian climate conditions. Volatilization from soil to air, leaching from soil to percolate water, and transport from upper to deeper soil layers were higher in sandy soil than in clay soil and in organic soil. Mineralization of 14C-terbuthylazine to 14CO2 was higher in sandy soil than in clay and organic soils under standardized climatic conditions, whereas it was higher in organic soil than in sandy soil under Brazilian summer conditions. Under natural Brazilian summer conditions, leaching as well as vertical transport within the soil were enhanced as compared to standardized climate conditions comprising lower precipitation rates; volatilization was strongly reduced under high irrigation conditions.  相似文献   

8.
The effect of soil properties on the retention of kerosene in soils, at equilibrium and under venting, was studied. Eleven soils were studied, which represent a wide range of chemical properties and mechanical composition. The retention of kerosene in dry soils ranges from 3.5 to 18.1 mL/(100 g), and was related linearly to clay, silt and organic matter (OM) contents. A coarsely-aggregated dry vertisol (2–5 mm aggregates) retained half as much kerosene as its finely-aggregated (<2 mm) counterpart. Moisture content had a strong inverse effect on kerosene retention. The soil factors that inversely affected kerosene retention also enhanced kerosene stripping by venting. Of these, soil aggregation and porosity were the most important. In addition, kerosene volatilized faster and more completely from an initially moist soil, as compared with an initially dry soil. Differential volatilization of lighter components of kerosene changed the chemical composition of the residue in the soil substantially, as compared with the initial composition.  相似文献   

9.
Arsenic (As) removal through microbially driven biovolatilization can be explored as a potential method for As bioremediation. However, its effectiveness needs to be improved. Biostimulation with organic matter amendment and bioaugmentation with the inoculation of genetic engineered bacteria could be potential strategies for As removal and site remediation. Here, the experiments were conducted to evaluate the impacts of rice straw and biochar amendment, inoculation of genetic engineered Pseudomonas putida KT2440 (GE P. putida) with high As volatilization activity, on microbial mediated As volatilization and removal from three different arseniferous soils. In general, the addition of rice straw (5%) significantly enhanced As methylation and volatilization in comparison with corresponding non-amended soils. Biochar amendments and inoculation of the GE P. putida increased As methylation and volatilization, respectively, but less than that of rice straw addition. The effectiveness of As volatilizations are quite different in the various paddy soils. The combined amendments of rice straw and GE P. putida exhibited the highest As removal efficiency (483.2 μg/kg/year) in Dayu soil, with 1.2% volatilization of the total As annually. The highest water-soluble As concentration (0.73 mg/kg) in this soil could be responsible for highest As volatilization besides the rice straw and bacteria in this soil.  相似文献   

10.
Phytotoxicity of dredged sediment from Hangzhou section of the Grand Canal as land application was evaluated by pakchoi (Brassica chinensis L.) germination tests and pot experiments. Germination rates of pakchoi in the dredged sediment and in sediment-applied soils were both significantly higher than that in the soil controls, while the germination rate between the sediment-applied soils was no significant difference. In pot experiments, plant height and biomass were increased by the dredged sediment application rate in the rate of lower than 540 t ha(-1), but decreased when the application rate was over this rate. Concentrations of Zn and Cu in pakchoi were linearly increased with the increasing of the application rate of the dredged sediment. Both plant height and biomass of pakchoi in sediment-treated red soil were higher than that in sediment-treated paddy soil, regardless the application rate. The results suggest that plant biomass of pakchoi may be used as an indicator of the phytotoxicity of the dredged sediment. It also showed that red soil is more suitable to accept the dredged sediment than paddy soil, and 270 t ha(-1) is a safe application rate both in red soil and paddy soil.  相似文献   

11.
Abstract

Experiments were conducted on adsorption, volatilization and UV‐degradation of p,p'‐DDT on soil surface, and leaching and degradation in sand columns. p,p'‐DDT was shown to adsorb stronger to soils with higher organic content. UV irradiation at 290 nm for 10 hours mineralized less than 0.1% of DDT in soil.

Results show that only 0.1% of DDT volatilized in a sun‐exposed semi‐closed quartz system. Polar compounds accounted from 1.4% after 55 days. The rate of volatilization and degradation in an open system was much higher; only 15% DDT and 7% DDE were recovered after 6 weeks in the organic extract. p,p'‐DDT was adsorbed to a great extent on the top layers of sand columns; 86% in the top 8 cm.  相似文献   

12.
An earthworm bioassay was conducted to assess ecotoxicity in methyl tert-butyl ether (MTBE)-amended soils. Ecotoxicity of MTBE to earthworms was evaluated by a paper contact method, natural field soil test, and an OECD artificial soil test. All tests were conducted in closed systems to prevent volatilization of MTBE out of test units. Test earthworm species were Perionyx excavatus and Eisenia andrei. Mortality and abnormal morphology of earthworms exposed to different concentrations of MTBE were examined. MTBE was toxic to both earthworm species and the severity of response increased with increasing MTBE concentrations. Perionyx excavatus was more sensitive to MTBE than Eisenia andrei in filter papers and two different types of soils. MTBE toxicity was more severe in OECD artificial soils than in field soils, possibly due to the burrowing behavior of earthworms into artificial soils. The present study demonstrated that ecotoxicity of volatile organic compounds such as MTBE can be assessed using an earthworm bioassay in closed soil microcosm with short-term exposure duration.  相似文献   

13.
The uptake of selected polycyclic aromatic hydrocarbons (PAHs) by rice (Oryza sativa) seedlings from spiked aged soils was investigated. When applied to soils aged for 4 months, naphthalene, phenanthrene, and pyrene exhibited volatilization loss of 98, 95, and 30%, respectively, with the remaining fraction being fixed by soil organic matter and/or degraded by soil microbes. In general, concentrations of the three PAHs in rice roots were greater than those in the shoots. The concentrations of root associated PHN and PYR increased proportionally with both soil solution and rhizosphere concentrations. PAH concentrations in shoots were largely independent of those in soil solution, rice roots, or rhizosphere soil. The relative contributions of plant uptake and plant-promoted rhizosphere microbial biodegradation to the total mass balance were 0.24 and 14%, respectively, based on PYR concentrations in rhizosphere and non-rhizosphere soils, the biomass of rice roots, and the dry soil weight.  相似文献   

14.
Lei X  Fujimaki H  Lu Y  Zhang Z  Maekawa T 《Chemosphere》2007,66(11):2077-2086
In order to find the optimal running conditions and mechanisms of ammonia removal through a soil trench system that is designed for treating pretreated methane fermentation effluent, a soil column whose structure was similar to the soil trench system was prepared, and irrigated with wastewater below 30 °C. At the beginning, ammonia was mainly adsorbed by the soils, and the ammonia adsorption capacity of soils gradually saturated. After the 12th day, nitrification began in the soil column; the ammonia in the soil column decreased sharply, and the nitrite and nitrate peak appeared sequentially as the wastewater application rate decreased from 0.74 to 0.37 l h−1. When the nitrification in the soil column reached a steady-state, 98% of all the ammonia in the influent was transformed into nitrate.

By changing the running conditions such as temperature, aeration, and wastewater application rate, it was found that the ammonia removal efficiency can be improved by aeration and impeded by low temperature. In these three variables, wastewater application rate has much greater affect on the ammonia removal efficiency; a lower wastewater application rate can increase the ammonia removal efficiency substantially because of the longer travel time.  相似文献   


15.
Pesticide contamination of ground water in the United States--a review   总被引:2,自引:0,他引:2  
Over 70 pesticides have been detected in ground water. Aldicarb and atrazine along with the soil fumigants EDB and DCP and DBCP have been the pesticides most frequently detected in ground water. Atrazine concentrations have been correlated with high nitrate concentrations. The triazine herbicides, simazine and cyanazine, have also been detected in ground water. The annual amount of recharge, soil type, depth of aquifer from the surface, nitrate contamination and soil pH are important field parameters in determining ground-water contamination potential by pesticides. Pesticide leaching is reduced by proper choice of crop rotation, increasing pesticide application efficiency, and integrated pest management.  相似文献   

16.
Plutonium uptake by Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) from soils with varying chemical composition and contaminated with Pu complexes (Pu-nitrate [239Pu(NO3)4], Pu-citrate [239Pu(C6H5O7)], and Pu-diethylenetriaminepentaacetic acid (Pu-DTPA [239Pu-C14H23O10N3]) was investigated. Sequential extraction of soils incubated with applied Pu was used to determine the distribution of Pu in the various soil fractions. The initial Pu activity levels in soils were 44.40-231.25 Bq g(-1) as Pu-nitrate Pu-citrate, or Pu-DTPA. A difference in Pu uptake between treatments of Pu-nitrate and Pu-citrate without chelating agent was observed only with Indian mustard in acidic Crowley soil. The uptake of Pu by plants was increased with increasing DTPA rates, however, the Pu concentration of plants was not proportionally increased with increasing application rate of Pu to soil. Plutonium uptake from Pu-DTPA was significantly higher from the acid Crowley soil than from the calcareous Weswood soil. The uptake of Pu from the soils was higher in Indian mustard than in sunflower. Sequential extraction of Pu showed that the ion-exchangeable Pu fraction in soils was dramatically increased with DTPA treatment and decreased with time of incubation. Extractability of Pu in all fractions was not different when Pu-nitrate and Pu-citrate were applied to the same soil. More Pu was associated with the residual Pu fraction without DTPA application. Consistent trends with time of incubation for other fractions were not apparent. The ion-exchangeable fraction, assumed as plant-available Pu, was significantly higher in acid soil compared with calcareous soil with or without DTPA treatment. When the calcareous soil was treated with DTPA, the ion-exchangeable Pu was comparatively less influenced. This fraction in the soil was more affected with time of incubation. The lowest extractable Pu was from a pH 6.55 Crockett soil that contained the highest clay compared to the other two soils. Extractable soil Pu was largely affected by soil pH and the amounts of clay, salt, metal oxide, and carbonate.  相似文献   

17.
The dissipation of chlorpyrifos (20 EC) at environment-friendly doses in the sandy loam and loamy sand soils of two semi-arid fields and the presence of pesticide residues in the harvested groundnut seeds, were monitored. The movement of chlorpyrifos through soil and its binding in the loamy sand soil was studied using 14C chlorpyrifos. Chlorpyrifos was moderately stable in both loamy sand and sandy loam soils, with half-life of 12.3 and 16.4 days, respectively. With 20 EC treatments the dissipation was slower for standing crop than seed treatment, indicative of the high degradation rates in the bioactive rhizosphere. In soil, 3,5,6-trichloro-2-pyridinol (TCP) was the principal breakdown product. Presence of 3,5,6-trichloro-2-methoxypyridine (TMP), the secondary metabolite, detected in the rhizospheric samples during this study, has not been reported earlier in field soils. The rapid dissipation of the insecticide from the soil post-application might have resulted from low sorption due to the alkalinity of the soil and its low organic matter content, fast topsoil dissipation possibly by volatilization and photochemical degradation, aided by the low water solubility, limited vertical mobility due to confinement of residues to the upper 15 cm soil layers and microbial mineralization and nucleophilic hydrolysis. Contrary to the reports of relatively greater mobility of its metabolites in temperate soils, TMP and TCP remained confined to the top 15 cm soil. The formation of bound residues (half-life 13.4 days) in the loamy sand soil was little and not "irreversible." A decline in bound residues could be correlated to decreasing TCP concentration. Higher pod yields were obtained from pesticide treated soils in comparison to controls. Post-harvest no pesticide residues were detected in the soils and groundnut seeds.  相似文献   

18.
Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to Kh. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make decision about agricultural practices such as incorporation or for the estimation of overall pesticide volatilization rates, and it holds promise for time specific dynamics.  相似文献   

19.
The effect of water content on the volatilization of nonaqueous phase liquid (NAPL) in unsaturated soils was characterized by one-dimensional venting experiments conducted to evaluate the lumped mass transfer coefficient. An empirical correlation based upon the modified Sherwood number, Peclet number, and normalized mean grain size was used to estimate initial lumped mass transfer coefficients over a range of water content. The effects of water content on the soil vapor extraction SVE process have been investigated through experimentation and mathematical modeling. The experimental results indicated that a rate-limited NAPL-gas mass transfer occurred in water-wet soils. A severe mass transfer limitation was observed at 61.0% water saturation where the normalized effluent gas concentrations fell below 1.0 almost immediately, declined exponentially from the initiation of venting, and showed long tailing. This result was attributed to the reduction of interfacial area between the NAPL and mobile gas phases due to the increased water content. A transient mathematical model describing the change of the lumped mass transfer coefficient was used. Simulations showed that the nonequilibrium mass transfer process could be characterized by the exponent beta, a parameter which described the reduction of the specific area available for NAPL volatilization. The nonequilibrium mass transfer limitations were controlled by the soil mean grain size and pore gas velocity, were well described by beta values below 1.0 at low water saturation, and were well predicted with beta values greater than 1.0 at high water saturation.  相似文献   

20.
In the first part of the paper, the development of a numerical pesticide emission model (PEM) is described for predicting the volatilization of pesticides applied to agricultural soils and crops through soil incorporation, surface spraying, or in the furrow at the time of planting. In this paper the results of three steps toward the evaluation of PEM are reported. The evaluation involves: (i) verifying the numerical algorithms and computer code through comparison of PEM simulations with an available analytical solution of the advection/diffusion equation for semi-volatile solutes in soil; (ii) comparing hourly heat, moisture and emission fluxes of trifluralin and triallate modeled by PEM with fluxes measured using the relaxed eddy-accumulation technique; and (iii) comparison of the PEM predictions of persistence half-life for 29 pesticides with the ranges of persistence found in the literature. The overall conclusion from this limited evaluation study is that PEM is a useful model for estimating the volatilization rates of pesticides from agricultural soils and crops. The lack of reliable estimates of chemical and photochemical degradation rates of pesticide on foliage, however, introduces large uncertainties in the estimates from any model of the volatilization of pesticide that impacts the canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号