首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article introduces the basic principles of plasma arc welding (PAW) and provides a survey of the latest research and applications in the field. The PAW process is compared to gas tungsten arc welding, its process characteristics are listed, the classification is made, and two modes of operation in PAW, i.e., melt-in and keyhole, are explained. The keyhole mechanism and its influencing factors are introduced. The sensing and control methodologies of the PAW process are reviewed. The coupled behaviors of weld pool and keyhole, the heat transfer and fluid flow as well as three-dimensional modeling and simulation in PAW are discussed. Finally, a novel PAW process variant, the controlled pulse keyholing process and the corresponding experimental system are introduced.  相似文献   

2.
In this paper a shared control strategy is presented that allows a skilled operator to identify irregularities that occur during robotic friction stir welding (FSW) and assist the robotic system in producing an appropriate response. Human operators are adept at identifying disturbances; however, the complexity of the friction stir welding process makes it difficult for the operator to respond. While examining the capabilities of shared control in friction stir welding, this paper focuses on responding to defects that are caused by a lack of workpiece material during butt welding, such as gaps. A compensation strategy is presented that combines the human operator's perceptual strengths with an automated procedure for adjustment of the process parameters (i.e. travel angle and plunge depth). Experiments comparing four control strategies are performed while welding 5083-H116 aluminum. Through our experiments we demonstrate that if the FSW control task is appropriately shared between the human operator and the computer control system, the weld quality (strength) can be improved (from 9 ksi to 31 ksi for a gap size of 2.5 mm) as compared with the nominal case in which no corrections are made.  相似文献   

3.
Simultaneous measurement of the tool torque, traverse force and axial force during friction stir welding process is of great significance to the understanding of the underlying process mechanism and the optimizing of the process parameters. Different from the traditional measurement methods using load cell or rotating component dynamometer, an indirect but economical methodology is used in this study for the simultaneous measurement of the traverse force, axial force and tool torque by monitoring the output torques of the servo motors and main spindle three-phase AC induction motor inside the FSW machine. The values of the traverse force, axial force and tool torque are determined under different welding conditions, and the influencing factors are examined. The measured results in friction stir welding of AA2024-T4 aluminum alloys at different combinations of tool rotation speed and welding speed lay foundation for process optimization.  相似文献   

4.
A rotating anvil similar to a pinless friction stir welding (FSW) tool can be applied to friction stir spot welding (FSSW) of thin metal plates. FSSW is a solid-state joining process that is currently being used by automotive manufacturers as an alternative to rivets and traditional resistance spot welding. The principal detractor of this process is the keyhole left by pin extraction, which can be detrimental to the weld strength. A pinless tool can be used to eliminate the keyhole. However, this approach is limited to joining thin sheet (≤1 mm). Using a rotating anvil with the FSSW process permits the joining of thicker cross sections, improves the mechanical strength of the spot weld and reduces the reaction forces on the spot welding frame. A numerical model of the process, tensile shear tests and macrosection analysis are used to evaluate the spot welds.Macrosection and numerical analysis reveals that the material flow between the pinless tool and rotating anvil is complex and unique to this process. It has been found that the use of a rotating anvil for FSSW is a viable means to create quality spot welds in thicker weldments.  相似文献   

5.
The objective of this research is to investigate the mechanical properties including bonding, tensile strength, and impact resistance of pure copper welded using friction stir welding (FSW) method and compare them with that of tungsten inert gas (TIG) welding. Micro-hardness tests are performed on pure copper, TIG welded copper and FSW welded copper to determine the effect of heat on the hardness of welded coppers. Tensile strength tests and notch tensile strength tests are performed to determine the mechanical properties of different weld process.In this experiment, it is found that the notch tensile strength and the notch strength ratio for FSW (212 MPa, 1.10) are significantly higher than those (190 MPa, 1.02) of TIG welding. For the impact tests, the weld zone and heat-affected zone energy absorption values for FSW (2.87 J, 2.25 J) are higher than those (1.32 J, 0 J) of TIG welding. XRD tests are performed to determine components of copper before and after welding process for TIG and FSW.  相似文献   

6.
By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials.  相似文献   

7.
目的研究铝锂合金搅拌摩擦焊焊缝在大气环境中的腐蚀行为。方法采用电化学极化法、质量增加法、扫描电子显微镜、三维体式显微镜几种不同的表征手段对铝锂合金搅拌摩擦焊焊缝在模拟海洋大气环境中的腐蚀行为进行研究。结果焊缝部位存在较为严重的应力腐蚀开裂现象,腐蚀电位比基体部位负移约0.05 V,腐蚀速率比一般基体部位明显增大。结论搅拌摩擦焊虽具有较多优点,在其他领域得到一定应用,但针对铝锂合金在海军飞机方向的应用存在缺陷,不能直接裸露使用。  相似文献   

8.
This paper presents a comprehensive survey of welding processes used to deposit wear resistant overlays. It is based on both literature review and research work performed at the Canadian Centre for Welding and Joining. The focus is on the two most popular material systems used for wear resistant overlays: nickel-base with the addition of tungsten carbide particles, and iron-base in which chromium carbides of the form M7C3 nucleate during solidification. The processes surveyed in detail are plasma transfer arc welding, submerged arc welding, laser beam welding, gas metal arc welding-related processes using tubular wires, oxy-acetylene flame brazing, and the still-experimental applications of friction stir processing. Cost and market are key factors influencing technical decisions on wear protection overlays, but the information is scarce and often tightly guarded. An informal survey from our industrial partners is included.  相似文献   

9.
Mass reduction of automotive body structures is a critical part of achieving reduced CO2 emissions in the automotive industry. There has been significant work on the application of ultra high strength steels and aluminum alloys. However, the next paradigm is the integrated use of both materials, which poses a challenge of how to join the dissimilar materials. Friction stir forming is a new manufacturing process for joining dissimilar materials. The concept of this process is stir heating one material and forming it into a mechanical interlocking joint with the second material. In this research the process was experimentally analyzed in a position controlled robotic friction stir welding machine between aluminum and steel workpieces. New tool geometries were evaluated toward the goal of optimizing joint strength. The significant process parameters were identified and their optimized settings for the current experimental conditions defined using a design of experiments methodology. A scanning electron microscope was used to characterize the bonding and joint structure for single and multi-pin configurations. Two failure modes, aluminum sheet peeling and bonding delamination, i.e. braze fracture, were identified. It was found that the presence of zinc coating on the steel and overall joint geometry greatly affected the joint strength. The aluminum–zinc braze joint appears to be the largest contributor to joint strength for the single-pin joint configuration. The multi-pin geometry enabled a distribution of load to the four pins following fracture of the braze for increased joint toughness and ductility. Thus, the FSF method has been shown to exhibit potential for joining of aluminum to steel.  相似文献   

10.
Friction stir spot welding is performed on thin plates of an aluminum alloy. This paper presents the results on how the number of tool rotations affects the quality of the resulting spot weld. Different combinations of rotation rate and dwell time are investigated. A linear relationship was found to exist between the number of tool rotations completed during the spot weld and the resulting tensile shear strength. Spot welds that only completed 10 rotations were 177% stronger than those created at 50 tool rotations. The energy generated during the welding operation was quantified and also found to have a linear relationship with tensile shear strength. A modified open-loop position control system is proposed that monitors and limits the energy generated during friction stir spot welding by adjusting the dwell time.  相似文献   

11.
典型气浮净水设备评述   总被引:3,自引:0,他引:3  
文章主要从气浮设备的原理与结构、优缺点、应用情况等方面评述了加压溶气气浮设备、涡凹气浮设备、浅层气浮设备、电气浮设备、充气水力旋流器、多段环流气浮塔和旋流-充气气浮系统等气浮设备,并讨论了气浮设备的研究和应用发展趋势。  相似文献   

12.
Flexural strength is one of the main criteria in evaluation of the mechanical properties of polymeric joints. The flexural strength of thermoplastics, such as high density polyethylene (HDPE) sheets, is influenced by friction stir welding parameters. The determination of the welding parameters plays an important role in the weld strength. In the present study, the response surface method (RSM) was used as a statistical design of experiment technique to set the optimal welding parameters. The designed tool was consisted of a rotating pin, a stationary shoulder (shoe) and a heating system inside shoe. Rotational speed of the pin, tool traverse speed and shoe temperature were considered as varying parameters. Obtained results show a significant relationship between considered properties and processing parameters through an analysis of variance (ANOVA) study and the response surface method. It was found that welding at a high level of rotational speed and a lower level of tool travel speed increases weld flexural strength by reducing size of defects.  相似文献   

13.
蚯蚓生物滤池污水处理技术研究进展   总被引:1,自引:0,他引:1  
蚯蚓生物滤池作为一项新的生态型污水处理技术,由于其具有工艺简单、建设费用低、处理效果好、剩余污泥少等优点,近年来越来越受到了国内外研究人员的重视。文章详细介绍了蚯蚓生物滤池的基本原理,发展过程以及在污水净化机理、工艺流程和应用方面的最新研究进展,以期为蚯蚓生物滤池及相关领域的研究提供参考。  相似文献   

14.
Friction Stir Welding (FSW), as a solid state welding process, seems to be one of the most promising techniques for joining titanium alloys avoiding a large number of difficulties arising from the use of traditional fusion welding processes. In order to pursue cost savings and a time efficient design, the development of numerical simulations of the process can represent a valid choice for engineers. In the paper an artificial neural network was properly trained and linked to an existing 3D FEM model for the FSW of Ti–6Al–4V titanium alloy, with the aim to predict both the microhardness values and the microstructure of the welded butt joints at the varying of the main process parameters. A good agreement was found between experimental values and calculated results.  相似文献   

15.
1 IntroductionDuringthepastfewyears,membraneseparationshavebecomemorewidelyused,andreplacedsomeoftheconventionalconcentrationt?..  相似文献   

16.
Aluminum–lithium (Al–Li) alloys are very attractive for potential aerospace applications due to their lower density, higher specific strength and rigidity, better corrosion and fatigue crack growth resistance properties, compared to conventional aluminum alloys. Laser beam welding (LBW), being an advanced joining method, has already been approved for applications involving aluminum alloys. However, there are still a number of problems and issues to be answered and solved in LBW of Al–Li alloys. In this review, the properties of Al–Li alloys and the characteristics of LBW are introduced, the formation and prevention of the main weld defects such as porosity and hot cracking are discussed, and then the weld microstructure and the joint mechanical properties are described in highlight. At the end, an outlook on future trends is presented.  相似文献   

17.
航空电子设备加速可靠性试验有限元分析应用进展   总被引:1,自引:0,他引:1       下载免费PDF全文
通过综述有限元分析在加速可靠性试验中的最新应用成果,分析了航空电子设备加速可靠性试验技术的基本现状和存在的挑战.主要从航空电子设备可靠性试验现状、有限元理论基本概念和应用方法以及有限元在电子设备可靠性试验的工程运用现状等方面进行了综述分析.首先对有限元理论的基本概念、原理和主要应用方法进行了阐述.其次,结合有限元分析在航空电子设备加速可靠性试验的应用研究现状,总结了其优缺点.研究发现,有限元分析能较好地解决航空电子设备加速可靠性试验中试验成本高、操作复杂的问题,可以较好地完成对加速可靠性试验的仿真模拟.最后对有限元分析应用于航空电子设备加速可靠性试验的研究方向进行了展望,提出了将有限元分析与传统可靠性理论相结合的几点研究思路,为未来航空电子设备加速可靠性试验方法提供整体发展思路与建议.  相似文献   

18.
环境介质中挥发酚的监测技术现状与展望   总被引:1,自引:0,他引:1  
挥发酚是一类重要环境优先污染物,严重危害生态环境和人体健康。文章综述挥发酚的分光光度法、紫外分光光度法、荧光分光光度法、气相色谱法、高效液相色谱法、流动注射分析法等检测方法的原理及应用,并展望挥发酚监测技术的研究趋势和前景。  相似文献   

19.
3种类型人工湿地处理富营养化水体中试比较研究   总被引:21,自引:4,他引:17  
针对五里湖富营养化水体,在同等条件下开展了3种类型人工湿地处理效果的比较研究,试验采用现场中试规模,水力负荷为0.8 m3/(m2·d).结果表明,垂直流、潜流和表面流3种人工湿地对氨氮的平均去除率分别为33.2%、27.4%和14.1%;对总氮的平均去除率分别为52.3%、50.1%和19.2%;对总磷的平均去除率分别为58.8%、57.9%和26.3%;对锰酸盐指数的平均去除率分别为37.2%、38.3%和14.8%;对叶绿素a的平均去除率分别为86.9%、96.1%和55.3%.可见,垂直流人工湿地对氨氮、总氮和总磷的去除效果最好,潜流人工湿地对高锰酸盐指数和叶绿素a的去除效果最好,但垂直流和潜流人工湿地之间的差异较小,表面流人工湿地对各污染物的去除效果均远低于前两者.从出水水质稳定性来看,垂直流人工湿地出水水质最稳定,潜流次之,表面流最差.  相似文献   

20.
In an attempt to map the residual stress distributions after friction stir welding of copper canisters, a three-dimensional thermo-mechanical model has been formulated by coupling heat transfer and elasto-plasticity analyses. The transient temperature field around the tool is simulated by a moving heat source. The simulation shows that the residual stress distribution in a thick-wall copper canister is sensitive to the circumferential angle and asymmetrical to the weld line. Both tensile and compressive stresses emerge along the weld line and its vicinity. The maximum tensile stress appears in the circumferential direction on the outer surface. The maximum tensile stress, whether it is predicted by the finite element method or measured by the hole-drilling technique and the X-ray diffraction method, does not exceed 50 MPa in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号