首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many nocturnal katydids (Orthoptera: Tettigoniidae) produce intense calling songs, and some bat species use these songs to detect and locate prey. One Nearctic katydid species, Neoconocephalus ensiger, ceases or pauses singing in response to bat echolocation calls. We tested the hypothesis that song cessation is an effective defence against gleaning bats (i.e., bats that take prey from surfaces). We observed Myotis septentrionalis, a sympatric bat species that uses prey-generated sounds when gleaning, attack and feed on singing N. ensiger in an outdoor flight room. These bats demonstrated a preference for the calling song of N. ensiger over a novel cricket calling song when they were broadcast from a speaker in the flight room. Bats attacked speakers broadcasting N. ensiger calling song as long as the song was continuous and aborted their attack if the sound stopped as they approached, regardless of whether a katydid was present as a physical target on the speaker. Echolocation calls were recorded during attacks and no significant differences were found between continuous and interrupted song approaches for four call parameters, suggesting that M. septentrionalis may not use echolocation to locate silent prey. Therefore, song cessation by katydids in response to ultrasound is an effective defence against gleaning bats.  相似文献   

2.
Summary Male treefrogs, Smilisca sila (Hylidae), produce calls of varying complexity and demonstrate a remarkable ability to synchronize their calls with those of neighbors. The bat Trachops cirrhosus eats frogs and uses the frogs' advertisement calls as locational cues. The bats are less likely to respond to synchronous calls than to asynchronous calls, and when given a choice prefer complex calls to simple calls.Experiments with bat models indicate that, like other frogs, S. sila probably uses visual cues to detect hunting bats. In response to bat models the frogs decreased both the number and the complexity of their calls. The calling behavior of the frogs was sampled in the field during periods with and without artificial illumination. The frogs produced fewer and less complex calls, and they tended to call from more concealed sites, during the period without illumination, when presumably it would have been more difficult for the frogs to detect hunting bats. S. sila tended to call from sites with higher ambient noise level, the noise primarily originating from waterfalls. The frequencies of the dominant energies in the waterfall sounds completely overlapped the frequency range of the S. sila call; thus waterfalls might mask the frog calls. When given a choice between calls produced near and away from waterfall sounds, bats preferred the latter.  相似文献   

3.
Interindividual use of echolocation calls: Eavesdropping by bats   总被引:4,自引:0,他引:4  
Summary The use of other individual's echolocation calls by little brown bats, Myotis lucifugus, was tested by observing the response of free-flying bats to presentations of recorded echolocation calls and artificial sounds. Bats responded by approaching conspecific calls while searching for food, night roosts, nursery colonies and mating/hibernation sites. Response was low or non-existant to other sounds. While searching for prey, M. lucifugus also responded to the echolocation calls of Eptesicus fuscus, a sympatric species with overlapping diet but distinctly different echolocation calls. Subadults were especially responsive to conspecific calls.All four situations in which the bats responded involve patchily distributed resources at which bats accumulate. Concentrations of echolocation calls thus likely serve as cues regarding the location of resources. Individuals approaching feeding groups, for example, could increase prey detection range by up to 50 times over individuals relying solely on their own echolocation.Although the costs associated with eavesdropping may be negligible for M. lucifugus, for other species, particularly territorial ones, being conspicuous may be a disadvantage and the possibility of being over-heard by other bats may have been one factor involved in the evolution of echolocation call design.  相似文献   

4.
Mutual recognition is the product of species coexistence, and has direct effects on survival and reproduction of animals. Bats are able to discriminate between sympatric different heterospecifics based on their echolocation calls, which has been shown both in free-flying and captive bats. To date, however, the factors that may determine the behavioral responses of bats to echolocation calls from sympatric heterospecifics have rarely been tested, especially under well-controlled conditions in captive bats. Hence, we aimed at tackling this question by performing playback experiments (habituation–dishabituation) with three horseshoe bat species within the constant-frequency bat guild, which included big-eared horseshoe bats (Rhinolophus macrotis), Blyth’s horseshoe bats (Rhinolophus lepidus), and Chinese horseshoe bats (Rhinolophus sinicus). We studied the behavioral responses of these three species to echolocation calls of conspecifics, to other two species, and to another heterospecifics bat, Stoliczka’s trident bat (Asellisus stoliczkanus), which also belongs to this guild. We found that the three rhinolophid species displayed a series of distinct behaviors to heterospecific echolocation but few to conspecific calls after habituation, suggesting that they may have been able to discriminate sympatric heterospecific echolocation calls from those of conspecifics. Interestingly, the behavioral responses to heterospecific calls were positively correlated with the interspecific overlap index in trophic niche, whereas call design had only a minor effect. This implies that the behavioral responses of these bats to heterospecific echolocation calls may be related to the degree of interspecific food competition.  相似文献   

5.
Bats produce echolocation signals that reflect the sensory tasks they perform. In open air or over water, bats encounter few or no background echoes (clutter). Echolocation of such bats is the primary cue for prey perception and varies with the stage of approach to prey, typically comprising search, approach, and terminal group calls. In contrast, bats that glean stationary food from rough surfaces emit more uniform calls without a distinct terminal group. They use echolocation primarily for orientation in space and mostly need additional sensory cues for finding food because clutter echoes overlap strongly with food echoes. Macrophyllum macrophyllum is the only Neotropical leaf-nosed bat (Phyllostomidae) that hunts in clutter-poor habitat over water. As such, we hypothesized that, unlike all other members of its family, but similar to other trawling and aerial insectivorous bats, M. macrophyllum can hunt successfully by using only echolocation for prey perception. In controlled behavioral experiments on Barro Colorado Island, Panamá, we confirmed that echolocation alone is sufficient for finding prey in M. macrophyllum. Furthermore, we showed that pattern and structure of echolocation signals in M. macrophyllum are more similar to aerial and other trawling insectivorous bats than to close phylogenetic relatives. Particularly unique among phyllostomid bats, we found distinct search, approach, and terminal group calls in foraging M. macrophyllum. Call structure, however, consisting of short, multiharmonic, and steep frequency-modulated signals, closely resembled those of other phyllostomid bats. Thus, echolocation behavior in M. macrophyllum is shaped by ecological niche as well as by phylogeny.  相似文献   

6.
Food availability does not only refer to the abundance of edible items; accessibility and detectability of food are also essential components of the availability concept. Constraints imposed by a habitat’s physical structure on the accessibility and detectability of food have been seldom treated simultaneously to the abundance of prey at the foraging patch level in observational studies. We designed a research that allowed decoupling the effects of microhabitat structure and prey abundance on foraging patch selection of the trawling insectivorous long-fingered bat (Myotis capaccinii). The use of different patches of river was surveyed by radiotelemetry during three periods of the bat’s annual cycle, and prey abundance was accordingly measured in and out of the hunting grounds of the tracked bats by insect traps emulating the species’ foraging. Bats preferentially used river stretches characterised by an open course and smooth water surfaces, i.e. they used the most suitable patches in terms of prey accessibility and detectability, respectively. In addition, prey abundance in the selected river stretches was higher than in others where bat activity was not recorded, although the latter also offered good access and prey detection possibilities. Bats also shifted foraging stretches seasonally, likely following the spatiotemporal dynamics of prey production over the watershed. We suggest that the decisions of bats during the patch choice process fitted a hierarchical sequence driven first by the species’ morphological specialisations and ability to hunt in unobstructed spaces, then by the detectability of prey on water surfaces and, finally, by the relative abundance of prey.  相似文献   

7.
Many bat species regularly need to find new day roosts as they require numerous shelters each breeding season. It has been shown that bats exchange information about roosts among colony members, and use echolocation and social calls of conspecifics in order to find roosts. However, it is unclear if wild bats discriminate between social calls of conspecifics and other bat species while searching for roosts. Furthermore, the extent that bats are attracted to potential roosts by each of these two call types is unknown. We present a field experiment showing that social calls of conspecifics and other bat species both attract bats to roosts. During two summers, we played back social calls of Bechstein’s bats (Myotis bechsteinii) and Natterer’s bats (Myotis nattereri) from different bat boxes that can serve as roosts for these species. All experimental bat boxes were monitored with infrared video to identify the approaching bat species. Three species (M. bechsteinii, M. nattereri, and Plecotus auritus) approached the boxes significantly more often during nights when bat calls were played compared to nights without playbacks. Bechstein’s bats and Natterer’s bats were both more attracted to social calls of conspecifics than of the other species, whereas P. auritus did not discriminate between calls of either Myotis species. Only Bechstein’s bats entered experimental boxes and only at times when calls from conspecifics were played. Our findings show that wild bats discriminate between social calls of conspecifics and other bat species although they respond to both call types when searching for new roosts.  相似文献   

8.
Eavesdropping on prey communication signals has never before been reported for a Palearctic bat species. In this study, we investigated whether lesser and greater mouse-eared bats, Myotis blythii oxygnathus and Myotis myotis, find tettigoniid bushcrickets (Tettigoniidae) by eavesdropping on their mate-attraction song. Tettigoniids are known to be the most important prey item for M. blythii oxygnathus, while carabid beetles and other epigaeic arthropods are the most important prey for its sibling species, M. myotis, in many places in Europe. M. myotis locates walking beetles by listening for their rustling sounds. We compared these two species’ response to four acoustic prey cues: calling song of two tettigoniid species, the rustling sound made by walking carabid beetles, and a control tone. Individuals of both bat species attacked the speaker playing tettigoniid song, which clearly indicates that both species eavesdrop on prey-generated advertisement signals. There were, however, species differences in response. M. blythii oxygnathus exhibited stronger predatory responses to the calling song of two species of tettigoniid than to the beetle rustling sound or the control. M. myotis, in contrast, exhibited stronger predatory responses to the beetle rustling and to one tettigoniid species but not the other tettigoniid or the control. Our study (1) for the first time demonstrates eavesdropping on prey communication signals for Palearctic bats and (2) gives preliminary evidence for sensory niche partitioning between these two sympatric sibling bat species.  相似文献   

9.
When searching for flying insects, Molossops temminckii uses unusual echolocation calls characterized by upward modulation of frequency vs time (UFM). Call frequency increases asymptotically in the relatively long (∼8 ms) pulses from a starting frequency of ∼40 kHz to a long narrowband tail at ∼50 kHz. When approaching a prey, the bat progressively increases the duration of calls and intersperses in the sequence broadband downwardly frequency-modulated signals with a terminal frequency of about 53 kHz, which totally replaces the UFM signals at the end of the approach phase. The sequence progresses to a capture buzz resembling those from other molossid and vespertilionid bats. The M. temminckii wing morphology is characterized by an average aspect ratio and a high wing loading, suggesting that it is more maneuverable than the typical Molossidae but less than typical Vespertilionidae. M. temminckii regularly forages near clutter, where it needs to pay attention to the background and might face forward and backward masking of signals. We hypothesize that the UFM echolocation signals of M. temminckii represent an adaptation to foraging near background clutter in a not very maneuverable bat needing a broad attention window. The broadband component of the signal might serve for the perception of the background and the narrowband tail for detection and perhaps classification of prey. Bats may solve the signal masking problems by separating emission and echoes in the frequency domain. The echolocation behavior of M. temminckii may shed light on the evolution of the narrowband frequency analysis echolocation systems adopted by some bats foraging within clutter.  相似文献   

10.
Summary Hipposideros ruber use CF/FM echolocation calls to detect the wing flutter of their insect prey. Fluttering prey were detected whether the insects were flying or sitting on a surface, and prey in either situation were captured with equal success (approximately 40% of capture attempts). Stationary prey were ignored. The bats did not use visual cues or the sounds of wing flutter to locate their prey. Wing flutter detection suggests that H. ruber exploit the Doppler-shifted information in echoes of their echolocation calls. These bats fed primarily upon moths, usually those of between 10 and 25 mm wingchord, although moths of less than 5 mm and greater than 40 mm wingchord were also attacked and captured. They showed no evidence of selecting moths on the basis of species or other taxonomic distinction, and occasionaly captured other insects.  相似文献   

11.
The echolocation calls used by Nyctalus leisleri during search phase in open air space are between 9 and 14 ms long, with the peak energy between 24 and 28 kHz. The pulses are shallowly frequency-modulated with or without an initial steep frequency-modulated component. The diet consists primarily of small flies (Diptera), including many chironomids (wingspan 9–12 mm) and yellow dung flies (Scatophaga; wingspan 24 mm), but also of some larger insects such as dung beetles (Coleoptera; Scarabaeoidea), caddis-flies (Trichoptera) and moths (Lepidoptera). The echo target strength of some prey items was measured. Contrary to models based on standard targets such as spheres or disks, the echo strength of real insects was found to be virtually independent of the emitted frequency within the 20–100 kHz frequency range. A model was used to calculate probable detection distances of the prey by the bat. Using narrow-band calls of 13.7 ± 2.7 ms duration, a bat would detect the two smallest size classes of insect at greatest range using calls of 20 kHz. The results may therefore explain why many species of large and medium sized aerial-hawking bats use low-frequency calls and still eat mostly relatively small insects. The data and model challenges the assumption that small prey are unavailable to bats using low-frequency calls.  相似文献   

12.
The 71 species of horseshoe bat (genus Rhinolophus) use echolocation calls with long constant-frequency (CF) components to detect and localize fluttering insects which they seize in aerial captures or glean from foliage. Here we describe ground-gleaning as an additional prey-capture strategy for horseshoe bats. This study presents the first record and experimental evidence for ground-gleaning in the little-studied Blasius horseshoe bat (Rhinolophus blasii). The gleaning bouts in a flight tent included landing, quadrupedal walking and take-off from the ground. The bats emitted echolocation calls continuously during all phases of prey capture. Both spontaneously and in a choice experiment, all six individuals attacked only fluttering insects and never motionless prey. These data suggest that R. blasii performs ground-gleaning largely by relying on the same prey-detection strategy and echolocation behaviour that it and other horseshoe bats use for aerial hawking.We also studied the Mediterranean horseshoe bat (R. euryale) in the flight tent. All four individuals never gleaned prey from the ground, though they appeared to be well able to detect fluttering moths on the ground. It is not known yet whether ground-gleaning plays a role in Mehelys horseshoe bat (R. mehelyi). In a performance test, we measured the ability of these three European species of middle-sized horseshoe bats (R. euryale, R. mehelyi and R. blasii) to take-off from the ground. All were able to take flight even in a confined space; i.e. the willingness to ground-glean in R. blasii is not related to a superior take-off performance. In contrast to ground-gleaning bats of other phylogenetic lineages, R. blasii appears not to be a specialist, but rather shows a remarkable behavioural flexibility in prey-capture strategies and abilities. We suggest that the key innovation of CF echolocation paired with behavioural flexibility in foraging strategies might explain the evolutionary success of Rhinolophus as the second largest genus of bat.Communicated by T. Czeschlik  相似文献   

13.
In extreme environments, temperature and precipitation are often the main forces responsible for structuring ecological communities and species distributions. The role of biotic interactions is typically thought to be minimal. By clustering around rare and isolated features, like surface water, however, effects of herbivory by desert-dwelling wildlife can be amplified. Understanding how species interact in these environments is critical to safeguarding vulnerable or data-deficient species. We examined whether African elephants (Loxodonta africana), black rhinoceros (Diceros bicornis), and southern giraffe (Giraffa giraffa) modulate insectivorous bat communities around permanent waterholes in the Namib Desert. We estimated megaherbivore use of sites based on dung transects, summarized vegetation productivity from satellite measurements of the normalized difference vegetation index, and surveyed local bat communities acoustically. We used structural equation models to identify relationships among megaherbivores and bat species richness and dry- (November 2016–January 2017) and wet- (February–May 2017) season bat activity. Site-level megaherbivore use in the dry season was positively associated with bat activity—particularly that of open-air foragers—and species richness through indirect pathways. When resources were more abundant (wet season), however, these relationships were weakened. Our results indicate that biotic interactions contribute to species distributions in desert areas and suggest the conservation of megaherbivores in this ecosystem may indirectly benefit insectivorous bat abundance and diversity. Given that how misunderstood and understudied most bats are relative to other mammals, such findings suggest that managers pursue short-term solutions (e.g., community game guard programs, water-point protection near human settlements, and ecotourism) to indirectly promote bat conservation and that research includes megaherbivores’ effects on biodiversity at other trophic levels.  相似文献   

14.
The shape of the sonar beam plays a crucial role in how echolocating bats perceive their surroundings. Signal design may thus be adapted to optimize beam shape to a given context. Studies suggest that this is indeed true for vespertilionid bats, but little is known from the remaining 16 families of echolocating bats. We investigated the echolocation beam shape of two species of emballonurid bats, Cormura brevirostris and Saccopteryx bilineata, while they navigated a large outdoor flight cage on Barro Colorado Island, Panama. C. brevirostris emitted more directional signals than did S. bilineata. The difference in directionality was due to a markedly different energy distribution in the calls. C. brevirostris emitted two call types, a multiharmonic shallowly frequency-modulated call and a multiharmonic sweep, both with most energy in the fifth harmonic around 68?kHz. S. bilineata emitted only one call type, multiharmonic shallowly frequency-modulated calls with most energy in the second harmonic (~46?kHz). When comparing same harmonic number, the directionality of the calls of the two bat species was nearly identical. However, the difference in energy distribution in the calls made the signals emitted by C. brevirostris more directional overall than those emitted by S. bilineata. We hypothesize that the upward shift in frequency exhibited by C. brevirostris serves to increase directionality, in order to generate a less cluttered auditory scene. The study indicates that emballonurid bats are forced to adjust their relative harmonic energy instead of adjusting the fundamental frequency, as the vespertilionids do, presumably due to a less flexible sound production.  相似文献   

15.
We studied the role of echolocation and other sensory cues in two small frugivorous New World leaf-nosed bats (Phyllostomidae: Artibeus watsoni and Vampyressa pusilla) feeding on different types of fig fruit. To test which cues the bats need to find these fruit, we conducted behavioral experiments in a flight cage with ripe and similar-sized figs where we selectively excluded vision, olfaction, and echolocation cues from the bats. In another series of experiments, we tested the discrimination abilities of the bats and presented sets of fruits that differed in ripeness (ripe, unripe), size (small, large), and quality (intact(infested with caterpillars). We monitored the bats' foraging and echolocation behavior simultaneously. In flight, both bat species continuously emitted short (<2 ms), multi-harmonic, and steep frequency-modulated (FM) calls of high frequencies, large bandwidth, and very low amplitude. Foraging behavior of bats was composed of two distinct stages: search or orienting flight followed by approach behavior consisting of exploration flights, multiple approaches of a selected fruit, and final acquisition of ripe figs in flight or in a brief landing. Both bat species continuously emitted echolocation calls. Structure and pattern of signals changed predictably when the bats switched from search or orienting calls to approach calls. We did not record a terminal phase before final acquisition of a fruit, as it is typical for aerial insectivorous bats prior to capture. Both bat species selected ripe over unripe fruit and non-infested over infested fruit. Artibeus watsoni preferred larger over smaller fruit. We conclude from our experiments, that the bats used a combination of odor-guided detection together with echolocation for localization in order to find ripe fruit and to discriminate among them.  相似文献   

16.
Bats alter their echolocation in response to changes in ecological and behavioral conditions, but little is known about how they adjust call structure in response to changes in altitude. We examined altitudinal variation in the echolocation of Brazilian free-tailed bats, Tadarida brasiliensis, a species known to fly to altitudes of 3,000 m above the ground. From 50.2 h of recordings, we analyzed 113 high-quality echolocation call sequences recorded from 0 to 862 m above ground level. Bats flying near the ground used shorter, higher-frequency, broader-bandwidth calls compared to bats at higher altitudes, an effect likely due to the greater levels of echo-producing clutter (i.e., vegetation, buildings) found near the ground. When ground-level recordings are excluded, bats continue to shift towards the use of longer-duration, lower-frequency, narrower-bandwidth calls with increasing altitude. We propose that the observed high-altitude changes in call structure are a response to changing acoustic attenuation rates and/or decreasing insect densities at higher altitudes.  相似文献   

17.
《Ecological modelling》2005,188(1):41-51
In plants that produce seeds with contrasting genetic background (selfed versus outcrossed), the question arises whether the ecological function of the two types of progeny differ. This paper addresses this issue for the ant-dispersed Calathea micans by introducing a novel application of the Neubert–Caswell model for analysis of wave speed for structured populations. Because dispersal as well as vital rates are structured, the model allows for distinct dispersal kernels for different types of progeny and thus permits comparisons of the sensitivity to changes in demographic and dispersal parameters of in situ population growth rate versus population spread across space. The study site was a lowland, evergreen tropical rain forest at La Selva Biological station, Costa Rica, where the species is commonly found throughout the forest. In C. micans, seeds produced by open flowers (potentially outcrossed) or by closed flowers (selfed) bear oily arils and are dispersed by ants. Five life-history stages were used to characterize the population: seedlings originating from seeds produced by open flowers, seedlings originating from seeds produced by closed flowers, juvenile vegetative plants, reproductive plants without new shoots and reproductive plants with new shoots. Demography varied seasonally. Transitions were estimated from marking and following the fate of plants (N = 400) in a natural population over a dry and a wet season. The population dynamics was described by a 10 × 10 matrix, with five life-history stages and two habitat states. The habitat states cycle repeatedly, dry–wet–dry–wet. To estimate dispersal kernels for each seed type, individual seeds (N = 225 and 306 seeds produced by open and closed flowers, respectively) were color-coded and placed in depots, allowing the ants to redistribute them. Five months later, seedlings with an attached seed coat bearing the intact color-coding, were surveyed around the depots. Radial distances and angles were recorded for each seedling (N = 67 and 81 seedlings arising from open and closed flowers, respectively). The results of the model give an asymptotic growth rate of 1.06 per season and an asymptotic rate of spread of 8.36 cm per season. There is a high correlation (r = 0.99) between elasticity of growth rate and elasticity of rate of spread of the population. Both rates are most sensitive to changes in stasis of juveniles during the dry season. However, most interesting is the analysis that revealed that population spread is more sensitive than in situ population growth to demographic rates of seedlings arising from open flowers. The analysis suggests a new way of thinking about ecological functions of multiple modes of reproduction.  相似文献   

18.
Daubenton's bat, a trawling vespertilionid bat species, hunts for insects that fly close to, or rest on, the water surface. During summer, many ponds at which Daubenton's bats hunt become gradually covered with duckweed. The purpose of this study was to investigate the effects of duckweed cover on the hunting behaviour of Daubenton's bats and on the ultrasound-reflecting properties of the water surface. Our study revealed the following. (1) Daubenton's bat avoids water surfaces covered with duckweed. (2) Prey abundance was related to the number of foraging Daubenton's bats but was independent of duckweed cover. (3) When mealworms were presented among standardized amounts of duckweed to naturally foraging Daubenton's bats, they caught significantly less mealworms when the duckweed cover was increased. (4) Measurements with ultrasonic signals show that a water surface covered with duckweed returns a much stronger background echo at small angles (i.e. parallel to the water surface) compared to an uncovered water surface. It seems likely that a cover of duckweed on the water surface interferes with prey detection by masking the echoes returning from prey. (5) It was relatively difficult for the bats to discriminate small patches of duckweed from mealworms. The proposed discrimination mechanism for this trawling bat species suggests that single duckweed patches can also be mistaken for natural prey by Daubenton's bats. Received: 4 January 1998 / Accepted after revision: 19 July 1998  相似文献   

19.
Echolocating bats adjust the time–frequency structure such as sweep rate and pulse interval of their sonar calls when they move from open space to vegetation-dense environments. Emitted call intensity is equally important for echolocation, but adjustment of signal intensity to different habitats has never been systematically studied in any bat species. To address this question, we recorded sonar calls of the Neotropical trawling insectivorous bat Macrophyllum macrophyllum (Phyllostomidae) at three sites with different obstacle densities (clutter). We found a clear correlation between emitted intensity and degree of clutter, with intensity proportional to decreasing clutter. In highly cluttered, semicluttered, and open spaces, M. macrophyllum emitted calls with mean source levels (sound pressure level (SPL) 10 cm from the bat’s mouth) of 100, 105, and 111 dB SPL root mean square (rms), respectively. To our knowledge, this is the first documentation of dynamic intensity adjustments in bats. Phyllostomid bats were previously considered silent, but the 111-dB SPL rms emitted by free-ranging M. macrophyllum in open space is comparable to output in aerial insectivorous bats from other families. Our results suggest that the acoustic constraints of habitats are better predictors of call intensity than phylogeny and therefore likely to be major drivers shaping the sonar system of bats in the course of evolution.  相似文献   

20.
The literature suggests that in familiar laboratory settings, Indian false vampire bats (Megaderma lyra, family Megadermatidae) locate terrestrial prey with and without emitting echolocation calls in the dark and cease echolocating when simulated moonlit conditions presumably allow the use of vision. More recent laboratory-based research suggests that M. lyra uses echolocation throughout attacks but at emission rates much lower than those of other gleaning bats. We present data from wild-caught bats hunting for and capturing prey in unfamiliar conditions mimicking natural situations. By varying light level and substrate complexity we demonstrated that hunting M. lyra always emit echolocation calls and that emission patterns are the same regardless of light/substrate condition and similar to those of other wild-caught gleaning bats. Therefore, echoic information appears necessary for this species when hunting in unfamiliar situations, while, in the context of past research, echolocation may be supplanted by vision, spatial memory or both in familiar spaces.Communicated by T. Czeschlik  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号