首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ji, Yuhe, Liding Chen, and Ranhao Sun, 2012. Temporal and Spatial Variability of Water Supply Stress in the Haihe River Basin, Northern China. Journal of the American Water Resources Association (JAWRA) 48(5): 999‐1007. DOI: 10.1111/j.1752‐1688.2012.00671.x Abstract: Water resources are becoming increasingly stressed under the influence of climate change and population growth in the Haihe River Basin, Northern China. Assessing the temporal and spatial variability of water supply stress is urgently needed to mitigate water crisis caused by water resource reallocation. Water supply and use data were compiled for the time period of 1998‐2003 in this synthesis study. The Water Supply Stress Index (WSSI) as defined as Water Demand/Water Supply was used to quantitate whether water supply could meet the demand of human activities across the study region. We found a large spatial gradient of water supply stress in the study region, being much higher in the eastern subbasins (ranging from 2.56 to 4.31) than the west subbasins (ranging from 0.56 to 1.92). The eastern plain region not only suffered more serious water supply stress but also had a much higher interannual variability than the western hilly region. The uneven spatial distribution of water supply stress might result from the distribution of land use, population, and climate. Future climate change and rapid economic development are likely to aggravate the existing water crisis in the study region.  相似文献   

2.
Abstract: Residential water demand is a function of several factors, some of which are within the control of water utilities (e.g., price, water restrictions, rebate programs) and some of which are not (e.g., climate and weather, demographic characteristics). In this study of Aurora, Colorado, factors influencing residential water demand are reviewed during a turbulent drought period (2000‐2005). Findings expand the understanding of residential demand in at least three salient ways: first, by documenting that pricing and outdoor water restriction policies interact with each other ensuring that total water savings are not additive of each program operating independently; second, by showing that the effectiveness of pricing and restrictions policies varies among different classes of customers (i.e., low, middle, and high volume water users) and between predrought and drought periods; and third, in demonstrating that real‐time information about consumptive use (via the Water Smart Reader) helps customers reach water‐use targets.  相似文献   

3.
Campana, Pete, John Knox, Andrew Grundstein, and John Dowd, 2012. The 2007‐2009 Drought in Athens, Georgia, United States: A Climatological Analysis and an Assessment of Future Water Availability. Journal of the American Water Resources Association (JAWRA) 48(2): 379‐390. DOI: 10.1111/j.1752‐1688.2011.00619.x Abstract: Population growth and development in many regions of the world increase the demand for water and vulnerability to water shortages. Our research provides a case study of how population growth can augment the severity of a drought. During 2007‐2009, a drought event that caused extreme societal impacts occurred in the Athens, Georgia region (defined as Clarke, Barrow, Oconee, and Jackson counties). An examination of drought indices and precipitation records indicates that conditions were severe, but not worse than during the 1925‐1927, 1954‐1956, and 1985‐1987 drought events. A drought of similar length to the 2007‐2009 drought would be expected to occur approximately every 25 years. Streamflow analysis shows that discharge levels in area streams were at a record low during 2007 before water restrictions were implemented, because of greater water usage caused by recent population increases. These population increases, combined with a lack of water conservation, led to severe water shortages in the Athens region during late 2007. Only after per capita usage decreased did water resources last despite continuing drought conditions through 2009. Retaining mitigation strategies and withdrawal levels such as seen during the height of the drought will be an essential strategy to prevent water shortages during future extreme drought events. The key mitigation strategy, independent local action to restrict water use in advance of state‐level restrictions, is now prohibited by Georgia State Law.  相似文献   

4.
Over the past decades, multi‐unit housing developments have been vastly expanded across urban areas due to the population growth. To properly supply water to this growing sector, it is essential to understand the determinants of its water use. However, this task has largely remained unexplored through the empirical study of water demand mainly due to the scarcity of data in this sector. This study integrated apartment water consumption, property characteristics, weather, water pricing, and census microdata to overcome this issue. Using a rich source of GIS‐based urban databases in Auckland, New Zealand, the study developed a large dataset containing the information of 18,000 low‐rise apartments to evaluate the determinants of water use both in the household scale and aggregated scale. The household‐scale demand analysis helped to assess the heterogeneity in responses to the demand drivers specifically water price across different consumer groups, whereas the aggregated analysis revealed the determinants behind the spatial variation in water demand at the census area unit level. Through applying panel data models, the study revealed the household size as the most important determinant of apartment water use in Auckland, where other socioeconomic factors, building features, and water pricing were not significant determinants. This knowledge of determinants of water demand can help water planners to better manage water demand in the compact urban environments.  相似文献   

5.
Abstract: Water demand in a viable economy tends to be dynamic: it changes over time in response to growth, drought, and social policy. Institutional capacity to re‐allocate water between users and uses under stress from multiple sources is a key concern. Climate change threatens to add to those stresses in snowmelt systems by changing the timing of runoff and possibly increasing the severity and duration of drought. This article examines Snake and Klamath River institutions for their ability to resolve conflict induced by demand growth, drought, and environmental constraints on water use. The study finds that private ownership of water rights has been a major positive factor in successful adaptation, by providing the basis for water marketing and by promoting the use of negotiation and markets rather than politics to resolve water conflict.  相似文献   

6.
Abstract: Assessment of long‐term impacts of projected changes in climate, population, and land use and land cover on regional water resource is critical to the sustainable development of the southeastern United States. The objective of this study was to fully budget annual water availability for water supply (precipitation ? evapotranspiration + groundwater supply + return flow) and demand from commercial, domestic, industrial, irrigation, livestock, mining, and thermoelectric uses. The Water Supply Stress Index and Water Supply Stress Index Ratio were developed to evaluate water stress conditions over time and across the 666 eight‐digit Hydrologic Unit Code basins in the 13 southeastern states. Predictions from two Global Circulation Models (CGC1 and HadCM2Sul), one land use change model, and one human population model, were integrated to project future water supply stress in 2020. We found that population increase greatly stressed water supply in metropolitan areas located in the Piedmont region and Florida. Predicted land use and land cover changes will have little effect on water quantity and water supply‐water demand relationship. In contrast, climate changes had the most pronounced effects on regional water supply and demand, especially in western Texas where water stress was historically highest in the study region. The simulation system developed by this study is useful for water resource planners to address water shortage problems such as those experienced during 2007 in the study region. Future studies should focus on refining the water supply term to include flow exchanges between watersheds and constraints of water quality and environmental flows to water availability for human use.  相似文献   

7.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   

8.
ABSTRACT: This paper synthesizes and interprets data pertaining to the evolution of average water revenue, water use, and the average cost of water supply in the City of Santa Barbara, California, from 1986 to 1996, a period which included one of the most devastating droughts in California this century. The 1987–1992 drought hit the study area particularly hard. The City of Santa Barbara was dependent exclusively on local sources for its water supply. That made it vulnerable as the regional climate is prone to extreme variability and recurrent droughts. The 1986–1992 drought provided a rare opportunity to assess the sensitivity of municipal water use to pricing, conservation, and other water management measures under extreme drought conditions. Our analysis indicates that the average cost of water rose more than three-fold in real terms from 1986 to 1996, while the gap between the average cost of supply and the average revenue per unit of water (= 100 cubic feet) rose in real terms from $0.14 in 1986 to $ 0.75 in 1996. The rise of $3.08 in the average cost of supplying one unit of water between 1986 and 1996 measures the cost of hedging drought risk in the study area. Water use dropped 46 percent at the height of the drought relative to pro-drought water use, and remains at 61 percent of the pre-drought level. The data derived from the 1987–1992 California drought are unique and valuable insofar as shedding light on drought/water demand adaptive interactions. The experience garnered on drought management during that unique period points to the possibilities available for future water management in the Arid West where dwindling water supplies and burgeoning populations are facts that we must deal with.  相似文献   

9.
Household water use behavior: An integrated model   总被引:1,自引:0,他引:1  
Water authorities are dealing with the challenge of ensuring that there is enough water to meet demand in the face of drought, population growth and predictions of reduced supply due to climate change. In order to develop effective household demand management programs, water managers need to understand the factors that influence household water use. Following an examination and re-analysis of current water consumption behavioral models we propose a new model for understanding household water consumption. We argue that trust plays a role in household water consumption, since people will not save water if they feel others are not minimizing their water use (inter-personal trust). Furthermore, people are less likely to save water if they do not trust the water authority (institutional trust). This paper proposes that to fully understand the factors involved in determining household water use the impact of trust on water consumption needs investigation.  相似文献   

10.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

11.
ABSTRACT: The Pacific Northwest (PNW) regional assessment is an integrated examination of the consequences of natural climate variability and projected future climate change for the natural and human systems of the region. The assessment currently focuses on four sectors: hydrology/water resources, forests and forestry, aquatic ecosystems, and coastal activities. The assessment begins by identifying and elucidating the natural patterns of climate vanability in the PNW on interannual to decadal timescales. The pathways through which these climate variations are manifested and the resultant impacts on the natural and human systems of the region are investigated. Knowledge of these pathways allows an analysis of the potential impacts of future climate change, as defined by IPCC climate change scenarios. In this paper, we examine the sensitivity, adaptability and vulnerability of hydrology and water resources to climate variability and change. We focus on the Columbia River Basin, which covers approximately 75 percent of the PNW and is the basis for the dominant water resources system of the PNW. The water resources system of the Columbia River is sensitive to climate variability, especially with respect to drought. Management inertia and the lack of a centralized authority coordinating all uses of the resource impede adaptability to drought and optimization of water distribution. Climate change projections suggest exacerbated conditions of conflict between users as a result of low summertime streamfiow conditions. An understanding of the patterns and consequences of regional climate variability is crucial to developing an adequate response to future changes in climate.  相似文献   

12.
Abstract: A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream‐to‐aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30‐year model‐simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground‐water insurance to sustain California during extended dry periods.  相似文献   

13.
Impacts of climate change on the severity and intensity of future droughts can be evaluated based on precipitation and temperature projections, multiple hydrological models, simulated hydrometeorological variables, and various drought indices. The objective of this study was to assess climate change impacts on future drought conditions and water resources in the Chesapeake Bay (CB) watershed. In this study, the Soil and Water Assessment Tool (SWAT) and the Variable Infiltration Capacity model were used to simulate a Modified Palmer Drought Severity Index (MPDSI), a Standardized Soil Moisture index (SSI), a Multivariate Standardized Drought Index (MSDI), along with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models for both historical and future periods (f1: 2020‐2049, f2: 2050‐2079). The results of the SSI suggested that there was a general increase in agricultural droughts in the entire CB watershed because of increases in surface and groundwater flow and evapotranspiration. However, MPDSI and MSDI showed an overall decrease in projected drought occurrences due to the increases in precipitation in the future. The results of this study suggest that it is crucial to use multiple modeling approaches with specific drought indices that combine the effects of both precipitation and temperature changes.  相似文献   

14.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

15.
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

16.
The coupled processes of climate change and urbanization pose challenges for water resource management in cities worldwide. Comparing the vulnerabilities of water systems in Phoenix, Arizona and Portland, Oregon, this paper examines (1) exposures to these stressors, (2) sensitivities to the associated impacts, and (3) adaptive capacities for responding to realized or anticipated impacts. Based on a case study and survey-based approach, common points of vulnerability include: rising exposures to drier, warmer summers, and suburban growth; increasing sensitivities based on demand hardening; and limited capacities due to institutional and pro-growth pressures. Yet each region also exhibits unique vulnerabilities. Comparatively, Portland shows: amplified exposures to seasonal climatic extremes, heightened sensitivity based on less diversified municipal water sources and policies that favor more trees and other irrigated vegetation, and diminished adaptive capacities because of limited attention to demand management and climate planning for water resources. Phoenix exhibits elevated exposure from rapid growth, heightened sensitivities due to high water demands and widespread increases in residential and commercial uses, and limited adaptive capacities due to weak land use planning and “smart growth” strategies. Unique points of vulnerability suggest pathways for adapting to urban-environmental change, whether through water management or land planning. Greater coordination between the land and water sectors would substantially reduce vulnerabilities in the study regions and beyond.  相似文献   

17.
Since its implementation in 2015, the Middle Route of the South‐to‐North Water Diversion Project (MR‐SNWDP) has transferred an average of 45 billion cubic meters of surface water per year from the Yangtze River in southern China to the Yellow River and Hai River Basin in northern China, but how that supply is able to cope with droughts under different scenarios has not been explored. In this study, using the water demand for 2020 as the guaranteed water target, a Water Evaluation and Planning system was used to simulate available water supplies in Beijing under different drought scenarios. In the case of a single‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 16.7%; with the MR‐SNWDP, this ratio reduced to 7.3%. In the case of a multi‐year drought, without the MR‐SNWDP, Beijing’s water shortage ratio was 25.3%; with the MR‐SNWDP, this ratio reduced to 7.4% and domestic water supply was improved. Our research suggests that to prepare for multi‐year drought in the Beijing area, the SNWDP supports increased supplies to the region that would mitigate drought effects. This study is, however, mostly focused on water supply provision to Beijing and does not comprehensively evaluate other potential impacts. Multiple additional avenues could be pursued that include replenishing groundwater, increasing reservoir storage, and water conservation methods. Further research is needed to explore the relative costs and benefits of these approaches.  相似文献   

18.
ABSTRACT: The paper outlines both the methods used and the results obtained in a study of the demand for municipal and industrial water for the Seattle region. The study was made as part of a regional water management study program, one objective of which is to “… identify, quantify, and set priorities for all current and future water uses …”. A basic concept in the study of municipal and industrial water use is that the demand for water is derived from the demand for output and the direct services that water provides. Principal characteristics of the study are: (1) Water use is studied by type - residential, commercial, industrial and public -with identification of factors affecting each; (2) Water demands are studied by season as well as on an annual basis; (3) Projections of future water use are tied directly to projections of economic change in the service area; and (4) The effects of alternative policies on water use are estimated. Water use levels are projected under alternative regional growth assumptions provided by the Puget Sound Governmental Conference, a regional planning agency. Thus, the water use planning is consistent with other regional planning programs in this respect. The results can be varied according to changes in specific factors affecting water use. The factors considered in the present study include: single-family residential lot size, distribution of population between single- and multi-family units, per capita water use by multi-family unit residents, and industrial and commercial water use per employee. An income elasticity of demand was estimated for single-family residential water use.  相似文献   

19.
ABSTRACT: The maximum concentration of a regulated substance that is allowed in a wastewater effluent usually is determined from the amount of dilution provided by the receiving water. Dilution flow is estimated from historical data by application of statistical criteria that define low flow conditions for regulatory purposes. Such use of historical data implies that the past is a good indicator of future conditions, at least for the duration of a discharge permit. Short records, however, introduce great uncertainty in the estimation of low flows because they are unlikely to capture events with recurrence frequencies of multiple years (e.g., ENSO events or droughts). We conducted an analysis of daily flows at several gages with long records in the South Platte River basin of Colorado. Low flows were calculated for successive time blocks of data (3‐, 5‐, 10‐, and 20‐years), and these were compared with low flows calculated for the entire period of record (> 70 years). In unregulated streams, time blocks of three or five years produce estimates of low flows that are highly variable and consistently greater than estimates derived from a longer period of record. Estimates of low flow from 10‐year blocks, although more stable, differ from the long term estimates by as much as a factor of two because of climate variation. In addition, the hydrographs of most streams in Colorado have been influenced by dams, diversions, or water transfers. These alterations to the natural flow regime shorten the record that is useful for analysis, but also tend to increase the calculated low flows. The presence of an upward trend in low flows caused by water use represents an unanticipated risk because it fails to incorporate societal response to severe drought conditions. Thus, climate variability poses a significant risk for water quality both directly, because it may not be represented adequately in the short periods of the hydrologic record that are typically used in permits, and indirectly, through its potential to cause altered use of water during time of scarcity.  相似文献   

20.
Quantifying surface water shortages in arid and semiarid agricultural regions is challenging because limited water supplies are distributed over long distances based on complex water management systems constrained by legal, economic, and social frameworks that evolve with time. In such regions, the water supply is often derived in a climate dramatically different from where the water is diverted to meet agricultural demand. The existing drought indices which rely on local climate do not portray the complexities of the economic and legal constraints on water delivery. Nor do these indices quantify the shortages that occur in drought. Therefore, this research proposes a methodological approach to define surface water shortages in irrigated agricultural systems using a newly developed index termed the Surface Water Delivery Index (SWDI). The SWDI can be used to uniformly quantify surface water deficits/shortages at the end of the irrigation season. Results from the SWDI clearly illustrate how water shortages in droughts identified by the existing indices (e.g., SPI and PDSI) vary strongly both within and between basins. Some surface water entities are much more prone to water shortages than other entities based both on their source of water supply and water right portfolios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号