首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract: A simple spreadsheet model was used to evaluate potential water quality benefits of high‐density development. The question was whether the reduced land consumed by higher density development (vs. standard suburban developments) would offset the worse water quality generated by a greater amount of impervious surface in the smaller area. Total runoff volume and per acre loadings of total phosphorous, total nitrogen, and total suspended solids increased with density as expected, but per capita loadings and runoff decreased markedly with density. For a constant or given population, then, higher density can result in dramatically lower total loadings than more diffuse suburban densities. The model showed that a simple doubling of standard suburban densities [to 8 dwelling units per acre (DUA) from about 3 to 5 DUA] in most cases could do more to reduce contaminant loadings associated with urban growth than many traditional stormwater best management practices (BMPs), and that higher densities such as those associated with transit‐oriented development could outperform almost all traditional BMPs, in terms of reduced loadings per a constant population. Because higher density is associated with vibrant urban life, building a better city may be the best BMP to mitigate the water quality damage that will accompany the massive urban growth expected for the next several decades.  相似文献   

2.
Abstract: The quality and quantity of residential stormwater runoff from a control, traditional, and low impact development (LID) watershed were compared in a paired watershed study. A traditional neighborhood was built using typical subdivision standards while a LID design was constructed with best management practices including grass swales, cluster housing, shared driveways, rain gardens, and a narrower pervious concrete‐paver road. Weekly, flow‐weighted, composite samples of stormwater were analyzed for nitrate + nitrite‐nitrogen (NO3 + NO2‐N), ammonia‐nitrogen (NH3‐N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total suspended solids (TSS). Monthly composite samples were analyzed for total copper (Cu), lead (Pb), and zinc (Zn). Mean weekly storm flow increased (600x) from the traditional watershed in the postconstruction period. Increased exports of TKN, NO3 + NO2‐N, NH3‐N, TP, Cu, Zn, and TSS in runoff were associated with the increased storm flow. Postconstruction storm flow in the LID watershed was reduced by 42% while peak discharge did not change from preconstruction conditions. Exports were reduced from the LID watershed for NH3‐N, TKN, Pb, and Zn, while TSS and TP exports increased.  相似文献   

3.
Urban stormwater runoff is often of poor quality, impacting aquatic ecosystems and limiting the use of stormwater runoff for recreational purposes. Several stormwater treatment facilities (STFs) are in operation or at the pilot testing stage, but their efficiencies are neither well documented nor easily compared due to the complex contaminant profile of stormwater and the highly variable runoff hydrograph. On the basis of a review of available data sets on urban stormwater quality and environmental contaminant behavior, we suggest a few carefully selected contaminant parameters (the minimum data set) to be obligatory when assessing and comparing the efficiency of STFs. Consistent use of the minimum data set in all future monitoring schemes for STFs will ensure broad-spectrum testing at low costs and strengthen comparability among facilities. The proposed minimum data set includes: (i) fine fraction of suspended solids (<63 μm), (ii) total concentrations of zinc and copper, (iii) total concentrations of phenanthrene, fluoranthene, and benzo(b,k)fluoranthene, and (iv) total concentrations of phosphorus and nitrogen. Indicator pathogens and other specific contaminants (i.e., chromium, pesticides, phenols) may be added if recreational or certain catchment-scale objectives are to be met. Issues that need further investigation have been identified during the iterative process of developing the minimum data set.  相似文献   

4.
The hydrologic and water quality benefits of an existing engineered stormwater control measures (SCMs) network, along with the alternative stormwater control simulations, were assessed in the rapidly urbanizing Beaverdam Creek watershed located in SE U.S. Piedmont region through the use of distributed Model of Urban Stormwater Improvement Conceptualization stormwater model. When compared with predevelopment conditions, the postdevelopment watershed simulation without SCMs indicated a 2 times increase in total runoff volume, 3 times average increase in peak flow for 1.5‐3.2 cm 6‐h storm events, and 30 times, 12 times, and 3 times higher total suspended solids (TSS), total phosphorous (TP), and total nitrogen (TN) loadings, respectively. The existing SCMs network, in comparison with the postdeveloped watershed without SCMs, reduced the average peak flow rates for 1.5‐3.2 cm 6‐h storm events by 70%, lowered the annual runoff volume by 3%, and lowered TSS, TP, TN annual loads by 57, 51, and 10%, respectively. A backyard rain garden simulation resulted in minimal additional reduction in TSS (1.6%), TP (0.4%), and TN (4%). Model simulations indicate that mandatory 85% TSS and 70% TP annual load reductions in comparison with the predevelopment levels would require the diversion of runoff from at least 70% of the contributing drainage areas runoff into additional offline bioretention basins.  相似文献   

5.
ABSTRACT: The Caloosahatchee River has two major sources of freshwater one from its watershed and the other via an artificial connection to Lake Okeechobee. The contribution of each source to the freshwater discharge reaching the downstream estuary varies and either may dominate. Routine monitoring data were analyzed to determine the effects of total river discharge and source of discharge (river basin, lake) on water quality in the downstream estuary. Parameters examined were: color, total suspended solids, light attenuation, chlorophyll a, and total and dissolved inorganic nitrogen and phosphorus. In general, the concentrations of color, and total and dissolved inorganic nitrogen increased, and total suspended solids decreased, as total discharge increased. When the river basin was the major source, the concentrations of nutrients (excepting ammonia) and color in the estuary were relatively higher than when the lake was the major source. Light attenuation was greater when the river basin dominated freshwater discharge to the estuary. The analysis indicates that water quality in the downstream estuary changes as a function of both total discharge and source of discharge. Relative to discharge from the river basin, releases from Lake Okeechobee do not detectably increase concentrations of nutrients, color, or TSS in the estuary.  相似文献   

6.
We coupled rainfall–runoff and instream water quality models to evaluate total suspended solids (TSS) in Wissahickon Creek, a mid‐sized urban stream near Philadelphia, Pennsylvania. Using stormwater runoff and instream field data, we calibrated the model at a subdaily scale and focused on storm responses. We demonstrate that treating event mean concentrations as a calibration parameter rather than a fixed input can substantially improve model performance. Urban stormwater TSS concentrations vary widely in time and space and are difficult to represent simply. Suspended and deposited sediment pose independent stressors to stream biota and model results suggest that both currently impair stream health in Wissahickon Creek. Retrofitting existing detention basins to prioritize infiltration reduced instream TSS loads by 20%, suggesting that infiltration mitigates sediment more effectively than detention. Infiltrating stormwater from 30% of the watershed reduced instream TSS loads by 47% and cut the frequency of TSS exceeding 100 mg/L by half. Settled loads and the frequency of high TSS values were reduced by a smaller fraction than suspended loads and duration at high TSS values. A widely distributed network of infiltration‐focused projects is an effective stormwater management strategy to mitigate sediment stress. Coupling rainfall–runoff and water quality models is an important way to integrate watershed‐wide impacts and evaluate how management directly affects urban stream health.  相似文献   

7.
In this paper, stormwater runoff from an urban watershed with combined sewer systems located in Daejeon metropolitan city, Korea, was characterized to measure the stormwater runoff discharge rates and pollutant concentrations. The observed averaged event mean concentrations (EMCs) of combined sewer overflows (CSO) were 536.1mg TSS/L, 467.7 mg TCODcr/L, 142.7 mg TBOD/L, 16.5mg TN/L, and 13.5mg TP/L. A detention basin was proposed to reduce CSO, and its essential design elements were discussed. The first flush significantly affected contaminant constituents in the descending order of suspended solid>organics>nutrients. Storage volumes for containing the first flush to improve water quality of the receiving stream can be estimated based on the total suspended solid loading. In this study, detention of the first flush equivalent to 5mm of precipitation could reduce CSO-induced diffuse pollution loading to a receiving water body by up to 80% of the total suspended solid loading.  相似文献   

8.
ABSTRACT: A loafing or sacrifice lot is an area located outside of the free stall barn, where a dairy herd spends several hours per day. Sacrifice lots are usually denuded of vegetation and have high concentrations of manure and urine that can contribute significant amounts of sediment, nutrients, and pathogens to nearby surface waters. In this study, stream water quality impacted by direct runoff from a sacrifice lot was monitored for a period of 20 months. Ambient stream water quality was monitored by grab sampling upstream and downstream of the sacrifice lot. During runoff events, stream water quality downstream of the sacrifice lot was monitored with an automatic sampler. Laboratory analyses were conducted for total suspended solids and nutrients (nitrogen and phosphorus compounds). A grass filter strip (GFS) was installed as a buffer downslope of the sacrifice lot 10 months into the study period. The impact of the buffer strip on the standardized pollutant concentrations and loads was evaluated using the non-parametric Wilcoxon test. The Wilcoxon test indicated that there was no significant difference (α= 0.05) in the standardized yield of sediment and dissolved pollutants before and after the GFS installation, except for phosphate-phosphorus and filtered total phosphorus concentrations, and sediment-bound total phosphorus and total kjeldahl nitrogen loads that decreased significantly. However, load decrease could have been partially caused by the smaller rainfall volumes after the GFS installation as compared to the existing condition.  相似文献   

9.
A methodologyis presented for assessing the pollution control performance of an on-stream stormwater pond, and the application of this methodology to a specific facility in Kingston, Ontario, Canada is documented. This assessment is based on constituent mass balances for both baseflow and event conditions. Results on removal rates are provided for selected dissolved constituents, nutrients, suspended solids, metals and organic contaminants. In summary, dissolved constituents exhibit zero removal for baseflow periods and positive removal for events; nutrients and suspended solids exhibit negative removal for baseflow periods and positive removal for events; and metals and organics exhibit positive removal for both baseflow periods and events. Constituent removal appears to be controlled mainly by physical processes (sedimentation), and the uncertainties associated with the estimates of constituent loads are quantified.  相似文献   

10.
Schiff, Kenneth C. and Liesl L. Tiefenthaler, 2011. Seasonal Flushing of Pollutant Concentrations and Loads in Urban Stormwater. Journal of the American Water Resources Association (JAWRA) 47(1):136‐142. DOI: 10.1111/j.1752‐1688.2010.00497.x Abstract: Despite broad observations of first flush within storms, the scientific understanding of seasonal flushing remains incomplete. Seasonal flushing occurs when initial storms of the season have greater concentrations or loads than storms later in the season. The goal of this study was to census stormwater concentrations and loads from an arid, urban watershed to quantify seasonal flushing. Samples were collected every 15 min during the 1997‐1998 wet season from the Santa Ana River and analyzed for total suspended solids. Initial storms of the season generated event mean concentrations 3‐10 times the event mean concentration of storms later in the season. Cumulative flow‐weighted mean concentrations were calculated as the season progressed. Early season storms discharged only 6% of the annual volume, but influenced flow‐weighted mean concentrations well past the midpoint of the wet season. Mass‐based estimates also indicated a disproportionate load in the early portion of the year; over 52% of the annual load was discharged in the first 30% of the annual volume from the highly urbanized lower watershed. Other stormwater pollutants, including six trace metals (Cd, Cr, Cu, Pb, Ni, Zn), were highly correlated with total suspended solids and also exhibited a significant seasonal flush.  相似文献   

11.
The purpose of this study is to develop a model for optimal nonpoint source pollution control for the Fei-Tsui Reservoir watershed in Northern Taiwan. Several structural best management practices (BMPs) are selected to treat stormwater runoff. The complete model consists of two interacting components: an optimization model based on discrete differential dynamic programming (DDDP) and a zero-dimensional reservoir water quality model. A predefined procedure is used to locate suitable sites for construction of various selected BMPs in the watershed. In the optimization model, the objective function is to find the best combination of BMP type and placement, which minimizes the total construction and operation, maintenance, and repair (OMR) costs of the BMPs. The constraints are the water quality standards for total phosphorus (TP) and total suspended solids (TSS) concentrations in the reservoir. A zero-dimensional reservoir water quality model of the Vollenweider type is embedded in the optimization framework to simulate pollutant concentrations in Fei-Tsui Reservoir. The resulting optimal cost and benefit of water quality improvement are depicted by the model-derived trade-off curves. The modeling framework developed in the present study could be used as an efficient tool for planning a watershed-wide implementation of BMPs for mitigating stormwater pollution impact on the receiving water bodies.  相似文献   

12.
Welker, Andrea L., James D. Barbis, and Patrick A. Jeffers, 2012. A Side‐by‐Side Comparison of Pervious Concrete and Porous Asphalt. Journal of the American Water Resources Association (JAWRA) 48(4): 809‐819. DOI: 10.1111/j.1752‐1688.2012.00654.x Abstract: This article compares the performance of two permeable pavements, pervious concrete and porous asphalt, that were installed side‐by‐side in fall 2007. Because the pavements are located directly adjacent to one another, they experience the same vehicle loads, precipitation, and pollution loads. These permeable pavements are part of an infiltration stormwater control measure (SCM). This article focuses on the comparison of water quality parameters, maintenance and durability, and user perception. Eleven different water quality parameters were analyzed at this site for 19 different storm events over a one year period: pH, conductivity, total suspended solids, chlorides, total nitrogen, total phosphorus, total dissolved copper, total dissolved lead, total dissolved cadmium, total dissolved chromium, and total dissolved zinc. Results from the two pavement types were compared using the Mann–Whitney U‐test. The only parameter that was found to be statistically different between the two pavements was pH. Periodic inspection of the two pavement types indicated that after two years of use both pavements were wearing well. However, there was some evidence of clogging of both pavements and some evidence of surface wear. A survey of users of the lot indicated that the perception of these permeable pavements was favorable.  相似文献   

13.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

14.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

15.
ABSTRACT: Control of stormwater runoff from impervious surfaces is an important national goal because of disruptions to downstream ecosystems, water users, and property owners caused by increased flows and degraded quality. One method for reducing stormwater is the use of vegetated (green) roofs, which efficiently detain and retain stormwater when compared to conventional (black) roofs. A paired green roof‐black roof test plot was constructed at the University of Georgia and monitored between November 2003 and November 2004 for the green roof's effectiveness in reducing stormwater flows. Stormwater mitigation performance was monitored for 31 precipitation events, which ranged in depth from 0.28 to 8.43 cm. Green roof precipitation retention decreased with precipitation depth; ranging from just under 90 percent for small storms (< 2.54 cm) to slightly less than 50 percent for larger storms (> 7.62 cm). Runoff from the green roof was delayed; average runoff lag times increased from 17.0 minutes for the black roof to 34.9 minutes for the green roof, an average increase of 17.9 minutes. Precipitation and runoff data were used to estimate the green roof curve number, CN = 86. This information can be used in hydrologic models for developing stormwater mitigation programs.  相似文献   

16.
ABSTRACT: The degradation of the optical aesthetics in the mouth of Onondaga Creek, New York, that occurs during high flow periods as a result of the influx of large quantities of suspended solids, is documented. Features of the degradation include very low clarity (Secchi disc minimum of approximately 0.1 m) and a brown ‘muddy’ appearance. The reduced clarity is mostly a result of increased light scattering. Loading and concentration profiles obtained for an approximately 35 km interval above the creek mouth over a wide range of flow indicates most of the suspended solids received during runoff events is resuspended stream sediment and eroded bank material. Application of microscopy-based individual particle analysis techniques indicates that the origin of most of these deposits and much of the suspended solids during runoff events is point source inputs, termed ‘mud boils,’ located approximately 32 km upstream of the creek mouth.  相似文献   

17.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

18.
ABSTRACT: Urban runoff contributes to nonpoint source pollution, but there is little understanding of the way that pattern and extent of urbanization contributes to this problem. Indicators of type and density of urbanization and access to municipal services were examined in six urban watersheds in Durham, North Carolina. Principal components analysis (PCA) was used to identify patterns in the distribution of these variables across the urban landscape. While spatial variation in urban environments is not perfectly captured by any one variable, the results suggest that most of the variation can be explained using several variables related to the extent and distribution of urban development. Multiple linear regression models were fit to relate these urbanization indicators to total phosphorus, total kjeldahl nitrogen, total suspended solids, and fecal coliforms. Development density was correlated to decreased water quality in each of the models. Indicators of urbanization type such as the house age, amount of contiguous impervious surface, and stormwater connectivity explained additional variation. In the nutrient models, access to city services was also an important factor. The results indicate that while urbanization density is important in predicting water quality, indicators of urbanization type and access to city services help explain additional variation in the models.  相似文献   

19.
Eutrophication of surface waters due to nonpoint source pollution from urban environments has raised awareness of the need to decrease runoff from roads and other impervious surfaces. These concerns have led to precautionary P application restrictions on turf and requirements for vegetative buffer strips. The impacts of two plant communities and three impervious/pervious surface ratios were assessed on runoff water quality and quantity. A mixed forb/grass prairie and a Kentucky bluegrass (Poa pratensis L.) blend were seeded and runoff was monitored and analyzed for total volume, total P, soluble P, soluble organic P, bioavailable P, total suspended solids, and total organic suspended solids. Mean annual runoff volumes, all types of mean annual P nutrient losses, and sediment loads were not significantly affected by treatments because over 80% of runoff occurred during frozen soil conditions. Total P losses from prairie and turf were similar, averaging 1.96 and 2.12 kg ha(-1) yr(-1), respectively. Vegetation appeared to be a likely contributor of nutrients, particularly from prairie during winter dormancy. When runoff occurred during non-frozen soil conditions turf allowed significantly (P < or = 0.10) lower runoff volumes compared with prairie vegetation and the 1:2 and 1:4 impervious/pervious surface ratios had less runoff than the 1:1 ratio (P < or = 0.05). In climates where the majority of runoff occurs during frozen ground conditions, vegetative buffers strips alone are unlikely to dramatically reduce runoff and nutrient loading into surface waters. Regardless of vegetation type or size, natural nutrient biogeochemical cycling will cause nutrient loss in surface runoff waters, and these values may represent baseline thresholds below which values cannot be obtained.  相似文献   

20.
ABSTRACT: Water quality was monitored for 17 months during base flow periods in six agricultural watersheds to evaluate the impact of riparian vegetation on suspended solids and nutrient concentrations. In areas without riparian vegetation, both instream algal production and seasonal low flows appeared to be major determinants of suspended solids, turbidity, and phosphorus concentrations. Peak levels of all parameters were reached during the summer when flows were reduced and benthic algal production was high. Similar summer peaks were reached in streams receiving major point inputs but peaks occurred downstream from the input. Instream organic production was less important in regulating water quality in areas with riparian vegetation and permanent flows. Concentrations of suspended solids remained relatively constant, while phosphorus and turbidity increased in association with leaf fall in autumn. Intermittent flow conditions in summer increased the importance of instream organic production in controlling water quality, even when riparian vegetation was present. Efforts to improve water quality in agricultural watersheds during base flow should emphasize maintenance of riparian vegetation and stable flow conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号