首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16–40 kPa for degraded MSW and the friction angle decreased from 35° for fresh MSW to 28° for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1° to 9°, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1° to 11°, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.  相似文献   

2.
In the analysis and design of municipal solid waste (MSW) landfills, there are many uncertainties associated with the properties of MSW during and after MSW placement. Several studies are performed involving different laboratory and field tests to understand the complex behavior and properties of MSW, and based on these studies, different models are proposed for the analysis of time dependent settlement response of MSW. For the analysis of MSW settlement, it is very important to account for the variability of model parameters that reflect different processes such as primary compression under loading, mechanical creep and biodegradation. In this paper, regression equations based on response surface method (RSM) are used to represent the complex behavior of MSW using a newly developed constitutive model. An approach to assess landfill capacities and develop landfill closure plans based on prediction of landfill settlements is proposed. The variability associated with model parameters relating to primary compression, mechanical creep and biodegradation are used to examine their influence on MSW settlement using reliability analysis framework and influence of various parameters on the settlement of MSW are estimated through sensitivity analysis.  相似文献   

3.
Chlorine (Cl) and sulfur (S) in municipal solid waste (MSW) are important reactive elements during combustion. They generate the acidic pollutants HCl and SOx, and, furthermore, produce and suppress organic chlorinated compounds. Nevertheless, few practical reports about Cl and S content in MSW have been published. In combustion and recycling processes, both combustible Cl and S, and incombustible Cl and S species are equally important. This paper presents the results of a comprehensive study about combustible and incombustible Cl and S in MSW components, including kitchen garbage, paper, textiles, wood and leaves, plastics and small chips. By integrating this collected data with data about MSW composition, not only the overall content of Cl and S in MSW, but also the origins of both combustible and incombustible Cl and S were estimated. The average Cl content in bulk MSW was 3.7 g/kg of raw MSW, of which 2.7 and 1.0 g/kg were combustible and incombustible, respectively. The Cl contribution from plastics was 76% and 27% with respect to combustible and incombustible states. The average S content in bulk MSW was 0.81 g/kg of raw MSW, of which 0.46 g/kg was combustible and 0.35 g/kg was incombustible. Combustible S was mainly due to synthetic textiles, while incombustible S was primarily from paper.  相似文献   

4.
Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW.  相似文献   

5.
讨论了传统的物质流分析(MFA)方法用于城市生活垃圾代谢分析的适用性及不足之处,在此基础上结合城市生活垃圾的处理流程,对传统的MFA框架进行了改进,构建了适合城市生活垃圾代谢分析的框架,并对新框架的3个模块进行了详细的说明,建立了相应的评价指标体系并给出了应用实例。城市生活垃圾循环利用系统物质代谢分析框架能够清楚地描述生活垃圾进入经济系统后的具体流向和流量,为描述城市生活垃圾的代谢情况提供了定性及定量化的分析工具。  相似文献   

6.
Rapid industrialization and urbanization in developing countries have created serious problems in municipal solid waste (MSW) management. New case studies can shed light on these problems and point the way to potential solutions for improving the overall eco-efficiency of MSW management. This paper employs a case study approach, analyzing MSW management in Inner Mongolia. This study encompasses all aspects of MSW management, including collection, separation, recycling, and disposal. Problems and challenges are identified through our analysis, and recommendations are raised by considering the local realities. Our main findings are: (1) while large cities have already established a solid foundation for MSW management, small- and medium-sized cities deserve more attention; (2) MSW in rural areas is even worse than urban areas; (3) enforcement of MSW regulations is ineffective and needs improvement; (4) lack of funds, R&D efforts and advanced technologies have impeded sustainable MSW management; (5) lack of coordination and communication among different stakeholders further damages the efforts for improvement of MSW management. Therefore, integrated efforts that combine the above concerns should be initiated so that the overall effectiveness and efficiency of MSW management can be improved.  相似文献   

7.
Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis–gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres.Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis–gasification of MSW.A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable – highest environmental impact as well as highest costs – are the thermal cracking gasification of granulated MSW and the gasification of tyres.  相似文献   

8.
This paper compares the syngas produced from methane with the syngas obtained from the gasification, in a two-stage reactor, of various waste feedstocks. The syngas composition and the gasification conditions were simulated using a simple thermodynamic model. The waste feedstocks considered are: landfill gas, waste oil, municipal solid waste (MSW) typical of a low-income country, the same MSW blended with landfill gas, refuse derived fuel (RDF) made from the same MSW, the same RDF blended with waste oil and a MSW typical of a high-income country. Energy content, the sum of H2 and CO gas percentages, and the ratio of H2 to CO are considered as measures of syngas quality. The simulation shows that landfill gas gives the best results in terms of both H2+CO and H2/CO, and that the MSW of low-income countries can be expected to provide inferior syngas on all three quality measures. Co-gasification of the MSW from low-income countries with landfill gas, and the mixture of waste oil with RDF from low-income MSW are considered as options to improve gas quality.  相似文献   

9.
Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H2) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.  相似文献   

10.
Industrialization and urbanization result in significant changes in lifestyle. These lifestyle changes seem to lead to unsustainable consumption patterns and increase the generation of various kinds of environmental loads, especially the amount of municipal solid waste (MSW). Taiwan is a small island with scarce natural resources. The economic development in Taiwan has resulted in the generation of large amounts of MSW. As a result, the Taiwan Environmental Pollution Administration (TEPA) has produced regulations for waste minimization and has imposed several important policy measures that have successfully reduced the MSW discard rate in recent years and have established a public recycling network as a part of the MSW collection. Nowadays, the objective of the MSW policies in Taiwan is to develop a “zero-waste society.” This article aims to review the MSW management progress in Taiwan and to project future MSW discards up to 2011 based on the national plan and assumed scenarios for socioeconomic variables. According to the analysis results, a more sustainable consumption pattern can be proposed and the corresponding MSW management system can be planned so as to develop a low-waste-discard society.  相似文献   

11.
Reduction and recycling initiatives such as producer responsibility and pay-as-you-throw are being implemented in Taiwan. This paper presents a study assessing the impact of recently implemented municipal solid waste (MSW) reduction and recycling management strategies on the characteristics of waste feedstock for incineration in Taiwan. Through the periodic sampling of two typical MSW incineration plants, proximate and ultimate analyses were conducted according to standard methods to explore the influence of MSW reduction and recycling management strategies on incineration feed waste characteristics. It was observed that the annual amount of MSW generated in 2005 decreased by about 10% compared to 2003 and that the characteristics of MSW have changed significantly due to recent management strategies. The heating value of the MSW generated in Taiwan increased yearly by about 5% after program implementation. A comparison of the monthly variations in chemical concentrations indicated that the chlorine content in MSW has changed. This change results from usage reduction of PVC plastic due to the recycling fund management (RFM) program, and the food waste as well as salt content reduction due to the total recycling for kitchen garbage program. This achievement will improve the reduction of dioxin emissions from MSW incineration. In summary, management strategies must be conducted in tandem with the global trend to achieve a zero-waste-discharge country. When implementing these strategies and planning for future MSW management systems, it is important to consider the changes that may occur in the composition and characteristics of MSW over time.  相似文献   

12.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

13.
Application of municipal solid waste (MSW) to arable land can be used to close the nutrient cycle between urban and rural areas. The aim of the current study was to quantify net N mineralization and respiration from composted MSW (CMSW) and anaerobically digested MSW (ADMSW) applied to soil, and to test whether a simple relationship between net N mineralization and respiration that was developed for plant materials, was applicable for these types of MSW. In a laboratory experiment, CMSW and ADMSW were incorporated into soil and incubated at 15 degrees C. During the 149-day experiment, netN mineralization and respiration were determined. Cumulative respiration derived from both MSW types was very steep during the first 30 days, after which it levelled off. However, calculated on the basis of applied C, the ADMSW was 10 times more degradable than the CMSW. Both MSW types caused initial net N immobilization followed by re-mineralization. A simple model based on the relationship between net N mineralization and respiration was only applicable for the MSW after significant modifications. If farmers are to recognize CMSW and ADMSW as valuable fertilizers, it is important that they can be produced with higher maturity, in order to avoid initial N immobilization.  相似文献   

14.
Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction.  相似文献   

15.
Increasing population levels, rapid economic growth and rise in community living standard accelerates the generation rate of municipal solid waste (MSW) in Indian cities. Improper management of MSW causes hazards to inhabitants. The objectives of the study are to determine the quantitative and qualitative characteristics of MSW along with basic information and to create GIS maps for Allahabad city. The samples have been randomly collected from various locations and analyzed to determine the characteristics of MSW. A questionnaire survey has been carried out to collect data from inhabitants including MSW quantity, collection frequency, satisfaction level, etc. The Geographic Information System (GIS) has been used to analyze existing maps and data, to digitize the existing sanitary ward boundaries and to enter the data about the wards and disposal sites. The total quantity of MSW has been reported as 500 ton/day, and the average generation rate of MSW has been estimated at 0.39 kg/capita/day. The generated ArcGis maps give efficient information concerning static and dynamic parameters of the municipal solid waste management (MSWM) problem such as the generation rate of MSW in different wards, collection point locations, MSW transport means and their routes, and the number of disposal sites and their attributes.  相似文献   

16.
Urban solid waste management in Chongqing: challenges and opportunities   总被引:2,自引:0,他引:2  
The dual influences of the resource supply and protection in ecological environments will pose a significant challenge to China's sustainable development. Solid waste management offers opportunities to improve profits by conserving resources and improving environmental performance. This paper examines municipal solid waste (MSW) management in urban Chongqing, the nation's fourth largest municipality after Beijing, Shanghai and Tianjin. In this paper, we will provide information on the quantity and composition of MSW, as well as give an overview of different methods for collection, transport, treatment and disposal of MSW. At present the daily amount of MSW generated per person is about 1.08 kg; food waste accounts for about 59% of total MSW. MSW in Chongqing has a higher moisture content (64.1%) and a lower LHV (3728 kJ/kg) than other cities in Asia, which is an obstruction for incineration. Landfills are the main method of disposal in Chongqing, but pollution caused by simple landfills and lack of backup MSW disposal capacity are becoming major problems in the main districts of Chongqing. In this paper, the challenges being faced and opportunities to MSW in Chongqing are analyzed and some suggestions are given for improving the MSW system in the future.  相似文献   

17.
This paper addresses the problems of the municipal solid waste (MSW) collection system in the Tubas district of Palestine. More specifically, it addresses the often-voiced concerns pertaining to low efficiency as well as environmental problems. This was carried out through a systematic methodological approach. The paper illustrates how a private company applied a logistical management strategy, by rescheduling the MSW collection system, reallocating street solid waste containers and minimizing vehicle routing. The way in which the MSW collection timetable was rescheduled decreased the operating expenses and thus reduced MSW collection costs. All data needed to reschedule the collection timetable and optimize vehicle routing were based on actual field measurements. The new MSW collection timetable introduced by a private company was monitored for a period of a month. The new system resulted in an improvement in the MSW collection system by reducing the collection cost to a level that is socially acceptable (US dollars 3.75/family/month), as well as economically and environmentally sound.  相似文献   

18.
The current municipal solid waste management situation in Tibet   总被引:2,自引:0,他引:2  
The Tibetan Plateau has an average altitude of more than 4,000 m. The total area of Tibetan Plateau is 2,400,000 km2, which occupies 25% of the area of China. Due to the high altitude, the environment has low atmospheric pressure, low oxygen content, and low temperature, and is also fragile. Investigations concerning MSW generation and characteristics, MSW management, collection and transportation, and treatment and disposal of MSW covered four representative cities, including the urban areas of Lhasa city, Shigatse, Nedong of Lhoka and Bayi of Nyingtri. The results show that MSW generation in the urban areas of Lhasa city and Tibet were 450 t/d and 3,597 t/d, respectively, in 2006. However, accelerated economic development and flourishing tourism caused by the opening of the Qinghai-Tibet Railway (QTR) have greatly increased solid waste generation to a new high. It is predicted that MSW generation in Tibet will reach 4,026 t/d in 2010 and 4,942 t/d in 2020. MSW management and disposal lag behind MSW generation due to a number of factors such as equipment shortage, insufficient maintenance, exhaustion of waste treatment capacity and low recycling efficiency. Still, MSW in most areas is dumped in the open with no controls. Because no appropriate collection and treatment systems for leachate and landfill gas exist, untreated leachate is discharged directly into the environment, causing serious secondary pollution. Some suggestions on improving the MSW management system are presented in this paper.  相似文献   

19.
The influence of the heating value of municipal solid waste (MSW) is very important on the combustion efficiency of MSW incinerators. The heating value of MSW is determined by the elementary chemical composition of its various components. Commonly, calorimetric measurement and empirical methods are available for this determination. In this analysis, the relationship between the physical composition and the low heating value (LHV) was studied. A feed forward neural network (FFNN) can be very helpful in predicting the heating value of MSW from its physical composition. The results of this analysis show that the prediction of LHV of MSW with FFNN is much better than conventional models.  相似文献   

20.
Aging and compressibility of municipal solid wastes   总被引:2,自引:0,他引:2  
The expansion of a municipal solid waste (MSW) landfill requires the ability to predict settlement behavior of the existing landfill. The practice of using a single compressibility value when performing a settlement analysis may lead to inaccurate predictions. This paper gives consideration to changes in the mechanical compressibility of MSW as a function of the fill age of MSW as well as the embedding depth of MSW. Borehole samples representative of various fill ages were obtained from five boreholes drilled to the bottom of the Qizhishan landfill in Suzhou, China. Thirty-one borehole samples were used to perform confined compression tests. Waste composition and volume-mass properties (i.e., unit weight, void ratio, and water content) were measured on all the samples. The test results showed that the compressible components of the MSW (i.e., organics, plastics, paper, wood and textiles) decreased with an increase in the fill age. The in situ void ratio of the MSW was shown to decrease with depth into the landfill. The compression index, Cc, was observed to decrease from 1.0 to 0.3 with depth into the landfill. Settlement analyses were performed on the existing landfill, demonstrating that the variation of MSW compressibility with fill age or depth should be taken into account in the settlement prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号