首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Silk fibers in the three layers of Attacus atlas (A. atlas) cocoons have morphological structure and tensile properties similar to that of Bombyx mori silk. Attempts are being made to produce silk for commercial applications from cocoons of relatively unknown wild insects due to the unique properties of the fibers and as a source of income and employment. In this research, A. atlas cocoons were used to study the chemical composition, morphology, physical structure and tensile properties of the silk fibers in the cocoons and ability of the fibers to support the attachment and proliferation of mouse fibroblast cells. It was found that A. atlas cocoons consists of outer, intermediate and inner layer with average breaking tenacity of 4.1, 4.3 and 3.6 g/den, respectively similar to that of B. mori silk (4.3–5.2 g/den). The heavier cocoons, less restrictive rearing conditions and good properties of the fibers compared to B. mori silk makes A. atlas a potential alternative to common silks for commercial scale silk production. A. atlas fibers had about 80 % higher optical densities of cells and extensive growth of F-actin compared to B. mori silk fibers.  相似文献   

2.
Using first-order kinetic empirical models to estimate landfill gas (LFG) generation and collection rates is well recognized in the literature. The uncertainty in the estimated LFG generation rates is a major challenge in evaluating performance of LFG collection and LFG to energy facilities. In this investigation, four methods for quantifying first-order LFG generation model parameters, methane generation potential, L0, and methane generation rate constant, k, were evaluated. It was found that the model is insensitive to the approach taken in quantifying the parameters. However, considering the recognition of using the model in the literature, the optimum method to estimate L0 and k is to determine L0 using disposed municipal solid waste composition and laboratory component specific methane potential values. The k value can be selected by model fitting and regression using the first-order model if LFG collection data are available. When such data are not available, k can be selected from technical literature, based on site conditions. For five Florida case-study landfills L0 varied from 56 to 77 m3 Mg−1, and k varied from 0.04 to 0.13 yr−1 for the traditional landfills and was 0.10 yr−1 for the wet cell. Model predictions of LFG collection rates were on average lower than actual collection. The uncertainty (coefficient of variation) in modeled LFG generation rates varied from ±11% to ±17% while landfills were open, ±9% to ±18% at the end of waste placement, and ±16% to ±203% 50 years after waste placement ended.  相似文献   

3.
A utilization way of herb residues is designed to convert herb residues to gas fuel in industrial-scale by a circulating fluidized bed gasifier in this paper. The product gas is used in the production of Chinese medicine, and the heat of the flue gas from the boiler can be used in herb residues drying to realize the energy recycling and no herb residues discharge. The gasification characteristics of herb residues in the circulating fluidized bed of 300 kg/h were investigated for about 200 h. The results indicated that the gas composition and tar yield were affected by biomass flow rate, equivalence ratio (ER), moisture content and char circulating. The lower heating value of product gas was 4–5 MJ/m3 using herb residues as feedstock. When mean biomass flow rate was at 5.5 kg m?2 s?1 and ER at 0.35, the product gas reached a good condition with lower heating value of 4.89 MJ/m3 and cold gas efficiency of 62.36%. When the moisture content changed from 12.5% to 18.7%, the concentrations of H2, CO and CO2 changed from 4.66% to 6.92%, 11.23% to 10.15%, and 16.55% to 17.82% respectively, and the tar content in gas decreased from 15.1 g/m3 to 14.4 g/m3 when the moisture content increased from 12.5% to 15.4%. There are metal oxides in the ash of herb residues, especially CaO, MgO, K2O, Al2O3, and Fe2O3 which have obvious function on tar catalytic decomposition. The ash that attaches to the char particles can decrease the tar yield and improve the quality of gas after returning to the gasifier.  相似文献   

4.
Linseed oil-based polymers have been synthesized via cationic and thermal polymerization and characterized through various techniques, such as SEM, DMA, DSC and TGA. The morphology of the polymer samples after extraction reveals the smooth structure of the polymer matrix. With an increase in oil content, the morphology is observed to be more loosely bound. With an increase in linseed oil content in the samples, the room temperature storage modulus (E′) varies from 10.4 × 107 to 1.8 × 107 Pa. The glass transition temperatures measured through DMA of the cationic samples ranges from 70 to −6 °C and the crosslink densities range from 18.4 × 103 to 3.4 × 103 mol/m3. The glass transition temperatures of the thermal samples range from 106 to −4 °C and the crosslink densities range from 7.7 × 103 to 2.4 × 103 mol/m3. The TGA results show three stages of degradation of the polymer samples and it is also revealed that these polymers are stable up to 200 °C, showing negligible decomposition.  相似文献   

5.
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100–350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states.  相似文献   

6.
Laboratory studies on the remediation of mercury contaminated soils   总被引:1,自引:0,他引:1  
Mercury, in contrast to other toxic metals, cycles between the atmosphere, land, and water. During this cycle, it undergoes a series of complex chemical and physical transformations. Because of these transformations, it is found in the environment not only as simple inorganic and organic compounds, but also as complex compounds. As a result, it is difficult to remediate mercury contaminated materials. Laboratory studies were conducted with a mercury contaminated complex waste from an industrial site to evaluate the ability of extractants such as H2O2, H2SO4 and Na2S2O3 to decontaminate the waste. Up to 87 percent of the total mercury present in the waste was extracted. Mercury was recovered as insoluble mercury sulfide by adding Na2S solution to the combined filtrates from the H2O2 + H2SO4 and Na2S2O3 treatment steps. The technique described in this article is capable of recovering mercury in a usable form and can be used as a pretreatment to remediate mercury contaminated waste before laud disposal.  相似文献   

7.
Survey information was used to develop a minimum cost spatial dairy manure transportation model where environmental quality and crop nutrient requirements were treated as constraints. The GIS model incorporated land use types, exact locations of dairy farms and farmlands, road networks, and distances from each dairy farm to receiving farmlands to identify dairy manure transportation routes that minimized costs relative to environmental and other constraints. Our analyses indicated that the characteristics of dairy manure, its bulk and relatively low primary N, P2O5 and K2O nutrient levels limit the distribution areas or distances between the farms and the land over which the manure can be economically spread. Physical properties of the land limit the quantities of nutrients that can be applied because of excess nutrient buildup in soil and potential to harm nearby waterbodies and downstream people and places. Longer distances between dairy and farmland favor the use of commercial fertilizers due to the high cost of manure transportation. At $0.08 per ton per km transportation cost, the optimal cut-off distances for dairy manure application is 30 km for N and 15 km each for P2O5 and K2O consistent rules. An analysis of dairy manure application to different crop types suggest that, on average, 1 ha of land requires 61 tons of dairy manure to meet the recommended N, P2O5 and K2O needs.  相似文献   

8.
The effluence of veterinary antibiotics (VAs) to aquatic and terrestrial environments is of concern due to the potential adverse effects on human health, such as the production of antibiotic resistant bacteria. One of the main pathways for antibiotics to enter the environment is via the application of manure and/or manure-based composts as an alternative organic fertilizer to agricultural lands. While a wide diversity of manure-based composts are produced in Korea, there is currently no regulatory guideline for VA residues. Hence, monitoring and limiting the concentration of VA residues in manure and/or manure-based composts prior to application to the lands is important to mitigate any environmental burden. The current study was conducted to examine the applicability of the Charm II antibiotic test system for monitoring tetracyclines, sulfonamides and macrolides in manure-based composts. The Charm II system was a highly reproducible method for determining whether VA residue concentrations in manure-based compost exceeded specific guideline values. A wide range of manure-based composts and liquid fertilizers commercially available in Korea were examined using the Charm II system to monitor the residues of the target VAs. For this, the guideline concentrations of VA residues (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides, and 0.1 mg kg−1 for macrolides) stated in ‘Official Standard of Feeds’ under the ‘Control of Livestock and Fish Feed Act’ in Korea were adopted to establish control points. Of the 70 compost samples examined 12 exceeded 0.8 mg kg−1 for tetracyclines and 21 exceeded 0.2 mg kg−1 for sulfonamides. Of the 25 liquid fertilizer samples examined most samples exceeded these prospective guidelines.  相似文献   

9.
Observations on the methane oxidation capacity of landfill soils   总被引:1,自引:0,他引:1  
The objective of this study was to determine the role of CH4 loading to a landfill cover in the control of CH4 oxidation rate (g CH4 m−2 d−1) and CH4 oxidation efficiency (% CH4 oxidation) in a field setting. Specifically, we wanted to assess how much CH4 a cover soil could handle. To achieve this objective we conducted synoptic measurements of landfill CH4 emission and CH4 oxidation in a single season at two Southeastern USA landfills. We hypothesized that percent oxidation would be greatest at sites of low CH4 emission and would decrease as CH4 emission rates increased. The trends in the experimental results were then compared to the predictions of two differing numerical models designed to simulate gas transport in landfill covers, one by modeling transport by diffusion only and the second allowing both advection and diffusion. In both field measurements and in modeling, we found that percent oxidation is a decreasing exponential function of the total CH4 flux rate (CH4 loading) into the cover. When CH4 is supplied, a cover’s rate of CH4 uptake (g CH4 m−2 d−2) is linear to a point, after which the system becomes saturated. Both field data and modeling results indicate that percent oxidation should not be considered as a constant value. Percent oxidation is a changing quantity and is a function of cover type, climatic conditions and CH4 loading to the bottom of the cover. The data indicate that an effective way to increase the % oxidation of a landfill cover is to limit the amount of CH4 delivered to it.  相似文献   

10.
Polylactic acid (PLA) is a hydrolytically degradable aliphatic polyester, and water vapor permeability may have a significant influence on the rate of degradation. A method is devised to use bags prepared from PLA films and filled with molecular sieves to determine the water vapor permeability in the polymer, its copolymers with caprolactone, and blends with polyethylene glycol. The “solution-diffusion” model is used to determine the permeability parameters. These include the solubility coefficient,S, a measure of the equilibrium water concentration available for hydrolysis and the diffusion coefficient,D, which characterizes the rate of water vapor diffusion into the film under specific conditions. Values ofS andD at 50‡C and 90% relative humidity ranged from 400 × 10-6 to 1000 × 10-6 cm3 (STP)/(cm3 Pa) and 0.20 × 10-6 to 1.0 × 10-6 cm2/s, respectively. TheS andD coefficients were also measured at 20 and 40‡C and compared to those of other polymers. The degree of crystallinity was found to have little influence on the measured permeability parameters. The heat of sorption, δHS, and the activation energy of diffusion, ED, were used to show that the permeability process is best described by the “water cluster” model for hydrophobic polymers. Finally, the diffusion coefficient is used to compare the rate of water diffusion to the rate of water consumption by ester hydrolysis. Results indicate that hydrolytic degradation of PLA is reaction-controlled.  相似文献   

11.
Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N2O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (<1%), and high lignin content (>14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N2O production over the 28 day incubation from the control soil was 1.5 mg/N2O/m2, and 11 mg/N2O/m2 from the control + N. The N2O emission decreased with GWC addition (< 0.05) for the high N soil, reducing cumulative N2O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N2O production during the first week of the trial, when soil N2O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N2O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N2O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N2O, an important greenhouse gas.  相似文献   

12.
In order to increase the organic loading rate (OLR) and hereby the performance of biogas plants an early warning indicator (EWI-VFA/Ca) was applied in a laboratory-scale biogas digester to control process stability and to steer additive dosing. As soon as the EWI-VFA/Ca indicated the change from stable to instable process conditions, calcium oxide was charged as a countermeasure to raise the pH and to bind long-chain fatty acids (LCFAs) by formation of aggregates. An interval of eight days between two increases of the OLR, which corresponded to 38% of the hydraulic residence time (HRT), was sufficient for process adaptation. An OLR increase by a factor of three within six weeks was successfully used for biogas production. The OLR was increased to 9.5 kg volatile solids (VS) m?3 d?1 with up to 87% of fat. The high loading rates affected neither the microbial community negatively nor the biogas production process. Despite the increase of the organic load to high rates, methane production yielded almost its optimum, amounting to 0.9 m3 (kg VS)?1. Beneath several uncharacterized members of the phylum Firmicutes mostly belonging to the family Clostridiaceae, a Syntrophomonas-like organism was identified that is known to live in a syntrophic relationship to methanogenic archaea. Within the methanogenic group, microorganisms affiliated to Methanosarcina, Methanoculleus and Methanobacterium dominated the community.  相似文献   

13.
Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66 kg CH4 cow−1 year−1 for dairy cows and from 13 to 25 kg CH4 cow−1 year−1 for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776 kg CO2 eq year−1, with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements.  相似文献   

14.
This research presents, thermal (TGA, Kinetics, DSC) analysis and FT-IR characterization of two bamboo species viz. Gigantochloa levis and Gigantochloa scortechinii at different position and locations (Internode and node). The internodes and nodes of Gigantochloa levis and Gigantochloa scortechinii exhibited similar thermal stability, observed up to 200 °C. The decomposition of cellulose and hemicelluloses component of the bamboo species occurred between 220 and 390 °C, while the degradation of lignin was observed above 400 °C. The kinetic studies revealed that Gigantochloa levis is more sensitive to degradation as compared to Gigantochloa scortechinii. The FT-IR studies were carried to assign the functional groups available at different positions and locations.  相似文献   

15.
In Japan, melting-furnace fly ash (MFA) generated from ash melting and gasification/melting plants is considered an “urban mine” due to its high metal content. This study aimed to develop a novel approach to pretreating MFA for metal recovery. Water extraction with CO2 bubbling was investigated because MFA mainly consists of water-soluble salts containing elements such as Cl, Ca, Na, and K. Instead of acid addition, CO2 bubbling was applied to maintain the optimal pH for minimizing the release of target metal elements and maximizing the removal of undesirable elements during water extraction. The results revealed that CO2 bubbling effectively decreased the release of Pb, Zn, and Cd into the treatment water. This was mainly due to coprecipitation with CaCO3, which was primarily formed by the reaction of Ca2+ from the MFA with CO3 2− from the CO2 gas. The bubbling process also helped accelerate the removal of Cl from MFA. Furthermore, the study showed that it is possible to lower the water-to-solid ratio to 5 with only a slight reduction in water extraction effect. Finally, approximately four times the concentration of target metals (rare metals and Cu, Pb, and Zn) was achieved by removing 90% of Cl, 70%–90% of Na and K, and 30%–40% of Ca through water extraction with CO2 bubbling, resulting in a concentration of target metals that was nearly equal to that of ore.  相似文献   

16.
This paper reports the structure and properties of silk fibers produced by Actias lunas in comparison to Bombyx mori and the common wild silks. Considerable efforts are being made to find new sources for natural silk and also to develop regenerated protein fibers to supplement the limited amounts of B. mori and wild silks available in the market. In addition, it has been found that non-traditional silks have unique properties and utilizing uncommon wild silks can provide income and employment to indigenous people where the wild silks are found. Actias lunas belongs to the Saturniidae family of silk producing insects. However, the structure and properties of silk produced by A. lunas have not been studied. This research showed that the silk fibers produced by the luna moth had morphological and physical structure similar to that of the common wild silks but tensile properties similar to that of B. mori silk. A. lunas silk fibers are composed of higher amounts of hydrophobic amino acids and had much less glycine than B. mori and common wild silks. With a fineness of 2 denier, breaking tenacity of 4.3?g/den and breaking elongation of 10.9?%, the tensile properties of A. lunas silk fibers were similar to that of B. mori and much better than that of the common wild silks that are coarser and have lower breaking tenacity. A. lunas fibers show good potential to be useful for applications currently using B. mori silk.  相似文献   

17.
The rising popularity of incineration of municipal solid waste (MSW) calls for detailed mathematical modeling and accurate prediction of pollutant emissions. In this paper, mathematical modeling methods for both solid and gaseous phases were employed to simulate the operation of a 450 t/d MSW-burning incinerator to obtain detailed information on the flow and combustion characteristics in the furnace and to predict the amount of pollutant emissions. The predicted data were compared to on-site measurements of gas temperature, gas composition and SNCR de-NOX system. The major operating conditions considered in this paper were grate speed and oxygen concentration. A suitable grate speed ensures complete waste combustion. The predictions are as follows: volatile release increases with increasing grate speed, and the maximal value is within the range of 700–800 kg/m2 h; slow grate speeds result in incomplete combustion of fixed carbon; the gas temperature at slow grate speeds is higher due to adequate oxygenation for fixed carbon combustion, and the deviation reaches 200 K; NOX emission decreases, but CO emission and O2 concentrations increase, and the deviation is 63%, 34% and 35%, respectively. Oxygen-enriched atmospheres promote the destruction of most pollutants due to the high oxygen partial pressure and temperature. The furnace temperature, NO production and CO emission increase as the oxygen concentration increases, and the deviation of furnace exit temperature, NO and CO concentration is 38.26%, 58.43% and 86.67%, respectively. Finally, oxygen concentration is limited to below 35% to prevent excessive CO and NOX emission without compromising plant performance. The current work greatly helps to understand the operating characteristics of large-scale MSW-burning plants.  相似文献   

18.
Construction and demolition (C&D) waste dumped alongside roads and in open areas is a major source of soil and underground water pollution. Since 2006, Israeli ministry for environmental protection enacted a policy of vehicle impoundment (VI) according to which track drivers caught while dumping C&D waste illegally have their vehicles impounded. The present study attempted to determine whether the VI policy was effective in increasing the waste hauling to authorized landfill sites, thus limiting the number of illegal unloads of C&D waste at unauthorized landfill sites and in open areas. During the study, changes in the ratio between the monthly amount of C&D waste brought to authorized landfills sites and the estimated total amount of C&D waste generated in different administrative districts of Israel were examined, before and after the enactment of the 2006 VI policy. Short questionnaires were also distributed among local track drivers in order to determine the degree of awareness about the policy in question and estimate its deterrence effects. According to the study’s results, in the district of Haifa, in which the VI policy was stringently enacted, the ratio between C&D waste, dumped in authorized landfill sites, and the total amount of generated C&D waste, increased, on the average, from 20% in January 2004 to 35% in October 2009, with the effect attributed to the number of vehicle impoundments being highly statistically significant (t = 2.324; p < 0.05). By contrast, in the Jerusalem and Southern districts, in which the VI policy was less stringently enforced, the effect of VI on the above ratio was found to be insignificant (p > 0.1). The analysis of the questionnaires, distributed among the local truck drivers further indicated that the changes observed in the district of Haifa are not coincident and appeared to be linked to the VI policy’s enactment. In particular, 62% of the truck drivers, participated in the survey, were aware of the policy and 47% of them personally knew a driver whose vehicle was impounded. Furthermore, the drivers estimated the relative risk of being caught for unloading C&D waste in unauthorized sites, on the average, as high as 67%, which is likely to become a deterrent on its own. Our conclusion is that the VI policy appears to have a deterring effect on truck drivers, by encouraging them to haul C&D waste to authorized landfill sites. As we suggest, the research methodology implemented in the study and its results may help policy makers in other regions and countries, which experience similar environment enforcement problem, to analyze policy responses.  相似文献   

19.
The Outer Loop landfill bioreactor (OLLB) in Louisville, KY, USA has been the site of a study to evaluate long-term bioreactor performance at a full-scale operational landfill. Three types of landfill units were studied including a conventional landfill (Control cell), a new landfill area that had an air addition and recirculation piping network installed as waste was being placed (As-Built cell), and a conventional landfill that was modified to allow for liquids recirculation (Retrofit cell). During the monitoring period, the Retrofit, Control, and As-Built cells received 48, 14, and 213 L Mg?1 (liters of liquids per metric ton of waste), respectively. The leachate collection system yielded 60, 57 and 198 L Mg?1 from the Retrofit, Control, and As-Built cells, respectively. The head on liner in all cells was below regulatory limits. In the Control and As-Built cells, leachate head on liner decreased once waste placement stopped. The measured moisture content of the waste samples was consistent with that calculated from the estimate of accumulated liquid by the liquid balance. Additionally, measurements on excavated solid waste samples revealed large spatial variability in waste moisture content. The degree of saturation in the Control cells decreased from 85% to 75%. The degree of saturation increased from 82% to 83% due to liquids addition in the Retrofit cells and decreased back to 80% once liquid addition stopped. In the As-Built cells, the degree of saturation increased from 87% to 97% during filling activities and then started to decrease soon after filling activities stopped to reach 92% at the end of the monitoring period. The measured leachate generation rates were used to estimate an in-place saturated hydraulic conductivity of the MSW in the range of 10?8 to 10?7 m s?1 which is lower than previous reports. In the Control and Retrofit cells, the net loss in liquids, 43 and 12 L Mg?1, respectively, was similar to the measured settlement of 15% and 5–8% strain, respectively (Abichou et al., 2013). The increase in net liquid volume in the As-Built cells indicates that the 37% (average) measured settlement strain in these cells cannot be due to consolidation as the waste mass did not lose any moisture but rather suggests that settlement was attributable to lubrication of waste particle contacts, softening of flexible porous materials, and additional biological degradation.  相似文献   

20.
The process-based INCA model was applied to Dalelva Brook (3.2 km2) and the Bjerkreim River (685 km2) including several subcatchments, in order to test the model's ability to simulate streamwater nitrate (NO3 -) dynamics and output fluxes under highly contrasting climatic conditions and nitrogen (N) loading. The simulated runoff volumes and mean NO3 - concentrations at Dalelva and Bjerkreimwere within +2 to +10% of the measured average during 1993–1995 (–19 to +31% within individual years). INCA to a great extent also reproduced the observed streamwater flow dynamics at both study sites (coefficient of determination, r 2 > 0.70). Temporal variation of streamwater NO3 - during 1993–1995 was captured quite well by the model, especially at small catchments with a distinct seasonal NO3 - pattern (r 2 = 0.46–0.68). At the Bjerkreim River outlet, the relationship were somewhat weaker (r 2 = 0.26, p < 0.01). Despite a few situations where the model failed to capturethe streamwater NO3 - dynamics, INCA proved to be a quite robust tool for simulating NO3 - dynamics and output fluxes in the two study catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号