首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In surface waters, phosphorus (P) concentrations exceeding 0.05 mg liter(-1) may cause eutrophic conditions. This study was undertaken to measure total P concentrations in runoff and tile drainage waters from land receiving either inorganic fertilizer or anaerobically digested sewage sludge. Total P was measured in runoff and tile drainage waters during 2 years of sample collections from instrumented, large-scale lysimeters planted to corn (Zea mays L.). During the 3 years prior to monitoring P concentrations, six of the lysimeter plots had been amended with anaerobically digested sewage sludge which supplied 5033 kg P per ha. Additional sludge applications supplied 1058 and 1989 kg P per ha during the first and second years of monitoring operations, respectively. Another six lysimeters were annually treated with fertilizer which included P applications amounting to 112 kg ha(-1). For years 1 and 2, respectively, annual losses from lysimeters treated with sewage sludge were 4.27 and 0.35 kg P per ha in runoff and 0.91 from 0.91 and 0.51 kg Per P per ha in drainage waters. Parallel annual losses of P from lysimeters treated with superphosphate were 2.15 and 0.17 kg ha(-1) in runoff and 0.53 and 0.35 kg ha(-1) in tile drainage waters. Sludge applications did not significantly change absolute soil contents of organic P, but did decrease the per cent of total P present in organic forms. Sludge and soil, respectively, contained 21 and 36% of their total P contents in organic forms. In sludge and soil about 85 and 64% of their respective total inorganic P contents were associated with the Al and Fe fractions. Sludge applications significantly increased soil contents of P in the saloid (water-soluble plus P extracted with 1 N NH(4)Cl), Al, Fe and reductant soluble P fractions, but contents of Ca-bound P were not changed. Total P contents of the soil below a depth of 30 cm were not affected by sludge incorporated to a depth of about 15 cm by plowing.  相似文献   

2.
Nitrogen mineralization in PAHs contaminated soil in presence of Eisenia fetida amended with biosolid or vermicompost was investigated. Sterilized and unsterilized soil was contaminated with PAHs, added with E. fetida and biosolid or vermicompost and incubated aerobically for 70 days, while dynamics of inorganic N were monitored. Addition of E. fetida to sterilized soil increased concentration of NH(4)(+) 100> mg N kg(-1), while concentrations in unsterilized remained <60 mg N kg(-1) except for soil amended with biosolid plus PAHs where it increased to >80 mg kg(-1). Addition of PAHs had no significant effect on concentration of NH(4)(+) compared to the unamended soil, except in the soil added with biosolid. Addition of E. fetida to sterilized soil increased concentration of NO(2)(-) 15> mg N kg(-1) while concentrations in unsterilized soil remained <7.5 mg N kg(-1) except for soil amended with biosolid where it increased to >20 mg kg(-1). Addition of PAHs had no significant effect on concentration of NO(2)(-) compared to the unamended soil. Addition of biosolid and vermicompost increased concentration of NO(3)(-), while addition of E. fetida decreased concentration of NO(3)(-) in biosolid amended soil. It was found that NH(4)(+) and NO(2)(-) oxidizers were present in the gut of E. fetida, but their activity was not sufficient enough to inhibit a temporarily increase in concentrations of NH(4)(+) and NO(2)(-). Contamination with PAHs induced immobilization of N in biosolid or vermicompost amended soil, as did feeding of E. fetida on biosolid or vermicompost.  相似文献   

3.
Research was conducted on nitrogen (N) surface run-off losses following organic manure applications to land, utilising a purpose-built facility on a sloping site in Herefordshire under arable tillage. Different rates and timing of cattle slurry, farmyard manure and inorganic N and phosphorus (P) fertiliser were compared, over a 4-year period (1993-97). P losses from the same studies are reported in a separate paper. The application of cattle slurries to the silty clay loam soil increased the loss of solids and NH4(+)-N in surface water flow compared to control plots receiving inorganic fertiliser only, or no treatment, but had little effect on NO3(-)-N losses by this route. Results were consistent with other observations that rainfall events immediately after manure applications are particularly likely to be associated with nutrient run-off losses. Losses via subsurface flow (30 cm interflow) were consistently much lower than via surface water movement and were generally unaffected by treatment. Increasing slurry application rate and, in particular, slurry solids loading, increased solids and NH4(-)-N losses via surface run-off. The threshold, above which the risk of losses via surface run-off appeared to be greatly increased, was ca. 2.5-3.0 t/ha slurry solids, which approximates to the 50 m3/ha limit suggested for slurry within UK 'good agricultural practice'. Sealing of the soil surface by slurry solids appears to be a possible mechanism by which polluting surface run-off may occur following slurry application on susceptible soils. Total losses of NH4(+)-N and NO3(-)-N during the 4-year monitoring period were insignificant in agronomic terms, but average soluble N concentrations (NH4(+)-N + NO3(-)-N) in run-off, ranging from ca. 2.0 mg/l, up to 14.0 mg/l for the higher rate slurry treatments. Peak concentrations of NH4(+)-N > 30 mg/l, are such as to be of concern in sensitive catchments, in terms of the potential for contribution to accelerated eutrophication and adverse effects on freshwater biota.  相似文献   

4.
To determine the source of dissolved inorganic nitrogen (N) in runoff, approx. 35kg N enriched with the stable isotope (15)N (2110 per thousand delta(15)N) was added to a mature coniferous forested catchment for one whole year. The total N input was approx. 50kg ha(-1) year(-1). The enrichment study was part of a long-term whole-catchment ammonium nitrate addition experiment at G?rdsj?n, Sweden. The (15)N concentrations in precipitation, throughfall, runoff and upper forest floor were measured prior to, during, and 3-9years following the (15)N addition. During the year of the (15)N addition the delta(15)N level in runoff largely reflected the level in incoming N, indicating that the leached NO(3)(-) came predominantly from precipitation. Only 1.1% of the incoming N was lost during the year of the tracer addition. The cumulative loss of tracer N over a 10-year period was only 3.9% as DIN and 1.1% as DON.  相似文献   

5.
The microscopic green alga, Chlorella pyrenoidosa was grown in settled and activated sewage under two different culture systems, batch and semi-continuous. Good growth was obtained in both types of wastewater and the algal production was comparable to and even higher than that found in commercial Bristol medium. The semi-continuous culture supported more growth than the batch system. There was a close relationship between algal growth and the amount of nutrient removed from both settled and activated sewage. A more rapid drop in NH(4)(+)-N was found in settle rather than activated sewage. The NH(4)(+)-N of settled sewage dropped from its initial 27 to 5 mg litre(-1) in both culture systems. On the other hand, the NO(3)(-)-N of activated sewage started to decrease from Day 2 onwards and the final NO(3)(-)-N concentration was less than 1 mg litre(-1) (over 90% removal efficiency). The amount of total inorganic nitrogen being reduced due to algal culture was similar in both types of sewage. The changes of phosphate content followed the same trend in both sewage, the P concentration increased slightly in the first two days then decreased, especially in the semi-continuous cultures. The final ortho-P in the sewage treated by Chlorella in semi-continuous culture was less than 5 mg litre(-1) (about 62% reduction). Such removal efficiency was slightly lower than those reported in previous studies. In general, the semi-continuous algal culture appeared to be a more suitable and efficient way for wastewater treatment than the batch system. With respect to the total reduction of wastewater inorganic N and P by means of Chlorella cells, there was no significant difference between settled and activated sewage.  相似文献   

6.
Catchment acidification-from the top down   总被引:1,自引:0,他引:1  
Three main factors define the speed of catchment acidification: the total input of pollutants; the thickness and character of soils, including the nature of the bedrock; and the size of subcatchments. The aerial input of pollutants in the Harz is among the highest in Central Europe (e.g. SO4-S: 22-70 kg (ha year)(-1); NO3-N: 9-10 kg (ha year)(-1); NH4-N: 10-15 kg (ha year)(-1) and Cd: 2.6-8.7 g (ha year)(-1); Cu: 34-125 g (ha year)(-1); Pb: 150-380 g (ha year)(-1); Zn: 105-560 g (ha year)(-1)). Thick soil profiles (2-4 m) acidify from the top down. Whether the soils will neutralize incoming acids depends on their buffering capacity. The small headwater subcatchments acidify first and subsequently release acidic water with pH values down to < or = 40. Four brook zones can be divided by the composition of their biocoenoses. The latter depend on the degree of acidification. These zones are also characterized by different hydrochemical conditions.  相似文献   

7.
Sewage sludge addition to agricultural lands requires judicious management to avoid environmental risks arising from heavy metal and nitrate contamination of surface water and accumulation in edible plants. A field study was conducted on a silty-loam soil of 10% slope at Kentucky State University Research Farm. Eighteen plots of 22 x 3.7 m each were separated using metal borders and the soil in six plots was mixed with sewage sludge and yard waste compost mix (SS-YW) at 15 t acre(-1), six plots were mixed with sewage sludge (SS) at 15 t acre(-1), and six unamended plots that never received sludge were used for comparison purposes. Plots were planted with eggplant, Solanum melongena L. as the test plant. The objectives of this investigation were to: 1) assess the effect of soil amendments on the transport of NO3, NH4, and heavy metals (Cd, Cr, Ni, Pb, Zn, Cu, and Mo) into surface water; 2) investigate the effect of soil amendments on heavy metal bioavailability in eggplant fruits at harvest; and 3) assess chemical and physical properties of soil following addition of soil amendments and their impact on the yield and quality of eggplant fruit. SS-YW treatments reduced runoff water by 63% while plots incorporated with sewage sludge alone reduced runoff water by 37% compared to control treatment. The SS-YW treatments transported more mineral nitrogen (NO3-N and NH4-N) in runoff water than SS treatments. Total marketable yield (lbs acre(-1)) and number of eggplant fruits were greatest in SS-YW treatments. This response may be due to improved soil porosity, water, and nutrient retention of the soil amended with SS-YW mixture. Concentrations of heavy metals in soil amended with sludge were below the U.S. Environmental Protection Agency (USEPA) limits. Chromium, Ni, Zn, and Cu were taken up by eggplant fruits but their concentrations were below the Codex Commission allowable levels.  相似文献   

8.
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.  相似文献   

9.
The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N-viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co-compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor x S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot(-1) for each amendment (equivalent to 50 t ha(-1) of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3-N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3-N and inorganic P concentration significantly compared with the non-legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3- could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co-compost and biosolids, but decreased by coal ash and N-viro soil by virtue of improved adsorption. The leguminous cover crop, sunn hemp, when incorporated into the soil, can cause the concentration of NO3-N to increase by about 7 fold, and that of inorganic P by about 23% over the non-legume. Regarding the metals, biosolids, N-viro soil and coal ash significantly increased Ca and Mg concentrations in leachates. Copper concentration in leachate was increased by application of biosolids, while Fe concentration in leachates was increased by biosolids, coal ash and co-compost. The concentrations of Zn, Mo and Co in leachate were increased by application of coal ash. The concentrations of heavy metals in leachates were very low and unlikely to be harmful, although they were increased significantly by coal ash application.  相似文献   

10.
Creosote-contaminated soil samples from the Libby Ground Water Contamination Superfund Site in Libby, MT, were amended with the potential alternate electron acceptors (AEA) nitrate (KNO3), manganese oxide (MnO2), and amorphous iron oxyhydroxide (FeOOH) and incubated at low oxygen tensions (0-6% O2). The fate of 14C-pyrene was evaluated with respect to the different soil amendments. The fate of 14C from the radiolabeled pyrene with regard to mineralization and bound residue formation within soil humic fractions was not significantly different from controls for the iron and manganese amended soils. Nitrate amendments appeared to stimulate 14C-pyrene mineralization at a level of 170 mg NO3-N kg(-1), and inhibit mineralization at 340 mg NO3-N kg(-1). The stimulatory effect did not appear to be the result of nitrate serving as an electron acceptor. Although AEA amendments did not significantly affect the rate or extent of 14C-pyrene mineralization, results of oxygen-deprived incubations (purged with N2) indicate that AEA may be utilized by the microbial community in the unsaturated contaminated soil system.  相似文献   

11.
Fate of nitrogen during composting of chicken litter   总被引:25,自引:0,他引:25  
Chicken litter (a mixture of chicken manure, wood shavings, waste feed, and feathers) was composted in forced-aeration piles to understand the changes and losses of nitrogen (N) during composting. During the composting process, the chemical [different N fractions, organic matter (OM), organic carbon (C), and C:N ratio], physical, and microbial properties of the chicken litter were examined. Cumulative losses and mass balances of N and organic matter were also quantified to determine actual losses during composting. The changes in total N concentration of the chicken litter piles were essentially equal to those of the organic N. The inorganic N concentrations were low, and that organic N was the major nitrogenous constituent. The ammonium (NH(4)(+))-N concentration decreased dramatically during first 35 days of composting. However, the rapid decrease in NH(4)(+)-N during composting did not coincide with a rapid increase in (NO(3)(-)+NO(2)(-))-N concentration. The concentration of (NO(3)(-)+NO(2)(-))-N was very low (<0.5 g kg(-1)) at day 0, and this level remained unchanged during the first 35 days of composting suggesting that N was lost during composting. Losses of N in this composting process were governed mainly by volatilization of ammonia (NH(3)) as the pile temperatures were high and the pH values were above 7. The narrow C:N ratio (<20:1) have also contributed to losses of N in the chicken litter. The OM and total organic C mass decreased with composting time. About 42 kg of the organic C was converted to CO(2). On the other hand, 18 kg was lost during composting. This loss was more than half (59%) of the initial N mass of the piles. Such a finding demonstrates that composting reduced the value of the chicken litter as N fertilizer. However, the composted chicken contained a more humified (stabilized) OM compared with the uncomposted chicken litter, which would enhance its value as a soil conditioner.  相似文献   

12.
To investigate the potential risk of 'nitrogen saturation' in Scandinavian boreal forests, the authors are experimentally adding 30-50 kg N ha(-1) year(-1) as NH4NO3 in precipitation to an entire 0.52-ha 80-year-old spruce forested catchment at G?rdsj?n, near Gothenburg on the Swedish west coast. NO3 concentrations in runoff increased from 0 to about 7 microeq liter(-1) (maximum pulse of 43 microeq liter(-1)). The increase occurred in winter; during the April-October growing season, NO3 concentrations were very low. The speed of the response suggests that these forests are already close to saturation.  相似文献   

13.
Anderson R  Xia L 《Chemosphere》2001,42(2):171-178
Soils from a long-term slurry experiment established in 1970 at Hillsborough, Northern Ireland, were used in the experiment. The site has a clay loam soil overlying Silurian shale. Seven treatments were used with three replicate plots per treatment under the following manurial regimes: (1) mineral fertiliser supplying 200 kg N, 32 kg P and 160 kg K ha(-1) yr(-1); (2)-(4) pig slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1); (5)-(7) cow slurry applied at 50, 100 or 200 m3 ha(-1) yr(-1). Agronomic measures of P determined on subsurface layers down to 90 cm were compared with sorption isotherm data and rates of desorption. Adsorption isotherms were fitted using a standard Langmuir model. Data were compared with soluble (molybdate-reactive) P levels in soil water collected at 35 and 90 cm using PTFE suction cup lysimeters. Agronomically available P was concentrated in the top 30 cm of soil in all treatments. The accumulation of P in surface layers of the plots was significantly greater in the pig slurry treatments compared to the cow slurry, reflecting the history of P amendments. Nevertheless, over a period of a year, molybdate-reactive phosphorus (MRP) concentrations in lysimeter collections was consistently higher at 35 cm depth in the highest cow slurry treatment (7) compared to the equivalent pig slurry treatment (4). Either the movement of soluble P down the profile is facilitated by the higher organic content of cow slurry or P movement is not directly related to P accumulation in the soils. In addition, it is hypothesised that P movement down the soil profile depends upon two separate mechanisms. First, a 'break' point above which the accumulated P in the surface horizons is less strongly held and therefore amenable to dissolution and movement down the profile. Second, a mechanism by which some solute P from the surface horizons can travel rapidly through horizons of low P status to greater depth in the soil, i.e., by preferential flow.  相似文献   

14.
Precipitation, soil solution and drainage water were collected from a blanket peat catchment at Moor House National Nature Reserve in the Northern Pennine Uplands, UK, an area of moderately high N deposition. Two tributaries of the main stream were also sampled. Between 1993 and 1995 samples were analysed for NH4+ and NO3- and for part of the period for organic N. Inputs of N in precipitation exceeded outputs in stream water. Organic N represented a small proportion of N inputs while inputs of inorganic N averaged 10.2 kg ha(-1) a(-1). Soil solution from 10 cm depth in the peat was dominated by organic N whereas at 50 cm NH4+ slightly exceeded organic N. NO3- was rarely detected at either depth except during a period of exceptionally warm and dry weather in 1995. Output fluxes in stream water of organic N (5.7 to 6.5 kg ha(-1) a(-1)) were much greater than those of inorganic N (0.6 to 2.2 kg ha(-1) a(-1)). Inorganic N in streams was predominantly NO3- except in the smallest stream which had the largest concentrations of NH4+. This suggests that N transformations, particularly nitrification, may be taking place in the mineral soils adjacent to the streams or within the stream channel of the larger catchment.  相似文献   

15.
During four intensive observation periods in 1992 and 1993, dry deposition of nitrogen dioxide (NO(2)) and ammonia (NH(3)), and wet deposition of nitrogen (N) were determined. The measurements were carried out in a small, extensively managed litter meadow surrounded by intensively managed agricultural land. Dry deposition of NH(3) was estimated by the gradient method, whereas eddy correlation was used for NO(2). Rates of dry deposition of total nitrate (= nitric acid (HNO(3)) + nitrate (NO(3)(-))), total nitrite (= nitrous acid (HONO) + nitrite (NO(2)(-))) and aerosol-bound ammonium (NH(4)(+)) were estimated using deposition velocities from the literature and measured concentrations. Both wet N deposition and the vertical NH(3) gradient were measured on a weekly basis during one year. Dry deposition was between 15 and 25 kg N ha(-1) y(-1), and net wet deposition was about 9.0 kg N ha(-1) y(-1). Daily average NO(2) deposition velocity varied from 0.11 to 0.24 cm s(-1). Deposition velocity of NH(3), was between 0.13 and 1.4 cm s(-1), and a compensation point between 3 and 6 ppbV NH(3) (ppb = 10(-9)) was found. Between 60 and 70% of dry deposition originated from NH(3) emitted by farms in the neighbourhood. It is concluded that total N deposition is exceeding the critical load for litter meadows, is highly correlated to local NH(3) emissions, and that NH(3) is of utmost importance with respect to possible strategies to reduce N deposition in rural regions.  相似文献   

16.
Nitrate leaching in an Andisol treated with different types of fertilizers   总被引:16,自引:0,他引:16  
Nitrate (NO3) leaching was studied in an Andisol treated with four N fertilizers (SC: swine compost, CU: coated urea, AN: ammonium N, or NF: no fertilizer) for 7 years. Sweet corn (Zea mays L.) was grown in summer, followed by Chinese cabbage (Brassica rapa L. var. amplexicaulis) or cabbage (Brassica oleracea L. var. capitata) in autumn each year. In chemical fertilizer plots treated with AN or CU, NO(3)-N concentrations in soil water at 1-m depth increased markedly in the summer of the second year and fluctuated between 30 and 60 mg l(-1). In the SC plot, NO(3)-N concentration started increasing in the fourth year, reaching the same level as in the AN and CU plots in the late period of the experiment. In the NF plot, NO(3)-N concentration was about 10 mg l(-1) for the first 4 years and decreased to 5 mg l(-1). The potential NO(3)-N concentrations by an N and water balance equation satisfactorily predicted NO(3)-N concentration in the AN and CU plots, but substantially overestimated that in the SC plot, presumably because a large portion of N from SC first accumulated in soil in the organic form. Our results indicate that, under the Japanese climate (Asian monsoon), excessive N from chemical fertilizers applied to Andisols can cause substantial NO3 leaching, while compost application is promising to establish high yields and low N leaching during a few years but would cause the same level of NO3 leaching as in chemically fertilized plots over longer periods.  相似文献   

17.
Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.  相似文献   

18.
The effect of cadmium on C and N mineralization in sewage sludge amended and unamended sandy loam, loam and clay loam soils was studied during 2 months incubation at 30+/-1 degrees C. The sludge amendment caused 15-39% increase in microbial respiration, with the maximum C mineralization in sandy loam and the minimum in loam soil. The addition of 10 microg Cd g(-1) soil had no remarkable effect on C and N mineralization and microbial biomass; whereas significant decreases in the above parameters were observed at 25 and 50 microg Cd g(-1) soil, irrespective of the sludge addition. Less NO3(-)-N accumulated at higher Cd concentration. Cd recovery was high in sandy loam and low in clay loam soil. DTPA extractable Cd exhibited a significant negative correlation with microbial biomass (r=-0.58* to -0.86*; p < 0.05).  相似文献   

19.
Factors affecting ammonia volatilisation from a rice-wheat rotation system   总被引:6,自引:0,他引:6  
Tian G  Cai Z  Cao J  Li X 《Chemosphere》2001,42(2):123-129
Some of the major factors influencing ammonia volatilisation in a rice wheat rotation system were studied. A continuous airflow enclosure method was used to measure NH3 volatilisation in a field experiment at an agricultural college in Jiangsu Province. The five treatments comprised application rates of 0, 100, 200 or 300 kg N ha(-1) as urea, per growing season with rice straw amendment when wheat was sown, and 200 kg N ha(-1) without rice straw amendment. There were three replicates in a randomised block design. Ammonia volatilisation was measured immediately after urea application in the three consecutive years 1995 to 1997. The results show that N losses through NH3 volatilisation accounted for 4-19% of N applied during the wheat growing season and for 5-11% during the rice growing season. Ammonia volatilisation was affected significantly by soil moisture and temperature before and after fertiliser application during the wheat growing season. The ratio of volatilised NH3-N to applied N after urea application during the rice growing season was as follows: top-dressing at the onset of tillering > top-dressing at the start of the booting stage > basal fertilization. The results also show that the amount of N lost through NH3 volatilisation increased with increasing N application rate, but the ratio to applied N was not affected significantly by N application rate. Amendment with rice straw had no significant effect on NH3 volatilisation.  相似文献   

20.
A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 x 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre(-1) on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF "napropamide" [N,N-diethyl-2-(1-naphthyloxy) propionamide] was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 microg g(-1) dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre(-1)) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre(-1)) or the no-mulch soil (7162 lbs acre(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号