首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
At the Bear Brook Watershed in Maine (BBWM), the forest tree composition was characterized and the effects of the chronic ammonium sulfate ((NH4)2SO4) treatment on basal area growth, foliar chemistry, and gas exchange were investigated on forest species. The BBWM is a paired watershed forest ecosystem study with one watershed, West Bear (WB), treated since 1989 with 26.6 kg N ha???1 year???1 and 30 kg S ha???1 year???1applied bimonthly as (NH4)2SO4, while the other watershed, East Bear (EB), serves as a reference. Tree species richness, density, and mortality were found to be similar between watersheds. Basal area increment was estimated from red spruce and sugar maple, showing that, for the first 7 years of treatment, it was significantly higher for sugar maple growing in WB compared to EB, but no differences were observed for red spruce between watersheds. However, the initial higher sugar maple basal area growth in WB subsequently decreased after 8 years of treatment. Foliar chemical analysis performed in trees, saplings, and ground flora showed higher N concentrations in the treated WB compared to the reference EB. But, foliar cation concentrations, especially Ca and Mg, were significantly lower for most of the species growing in WB compared with those growing in EB. For sugar maple, foliar N was higher on WB, but there were no differences in foliar Ca and Mg concentrations between treated and reference watersheds. In addition, only sugar maple trees in the treated WB showed significantly higher photosynthetic rates compared to reference EB trees.  相似文献   

2.
Increased use of nitrogenous fertilizers in the intensively cultivated rice (Oryza sativa)?Cwheat (Triticum aestivum) cropping system (covers a 13.5-ha m area in South Asia) has led to the concentration of nitrates (NO3-N) in the groundwater (GW) in Haryana State of India. Six districts from the freshwater zone were selected to identify factors affecting NO3-N enrichment in GW. Water and soil samples were collected from 1,580 locations and analyzed for their chemical properties. About 3% (26,796, and 10,588 ha) of the area was estimated to be under moderately high (7.5?C10 mg l???1) and high (>10 mg l???1) risk categories, respectively. The results revealed that NO3-N was 10?C50% higher during the pre-monsoon season than in the monsoon season. Nitrate-N decreased with the increase in aquifer depth (r 2?=?0.99). Spatial and proximity analyses using ArcGIS (9.2) revealed that (1) clay material in surface and sub-surface texture restricts N leaching, (2) piedmont and rolling plains act as an N sink, and (3) perennial rivers bring a dilution effect whereas seasonal rivers provide favorable conditions for NO3 ? enrichment. The study concludes that chemical N fertilizers applied in agro-ecosystems are not the sole factor determining the NO3 in groundwater; rather, it is an integrated process governed by several other factors including physical and chemical properties of soils, proximity and type of river, and geomorphologic and geographical aspects. Therefore, future studies should adopt larger area (at least watershed scale) to understand the mechanistic pathways of NO3 enrichment in groundwater and interactive role of the natural drainage system and surrounding physical features. In addition, the study also presents a conceptual framework to describe the process of nitrate formation and leaching in piedmont plains and its transportation to the mid-plain zone.  相似文献   

3.
Hydrogeochemical studies were carried out in the Penna–Chitravathi river basins to identify and delineate the important geochemical processes which were responsible for the evolution of chemical composition of groundwater. The area is underlain by peninsular gneissic complex of Archaean age, Proterozoic meta-sediments, and strip of river alluvium. Groundwater samples were collected covering all the major hydrogeological environs in pre- and post-monsoon seasons. The samples were analyzed for major constituents such as Ca2?+?, Mg2?+?, Na?+?, K?+?, CO3 ???, HCO3 ???, Cl???, SO2 ???4, NO3 ???, and F???. The groundwater in general is of Na?+?–Cl???, Na?+?–HCO3 ???, Ca2?+?–Mg2?+?–HCO3 ???, and Ca2?+?–Mg2?+?–Cl??? types. Na?+? among cations and Cl??? and/or HCO3 ??? among anions dominate the water; Na?+? and Ca2?+? are in the transitional state with Na?+? replacing Ca2?+? and HCO3 ??? Cl??? due to physiochemical changes in the aquifer and water–rock interactions. The Ca2?+?–Mg2?+?–Cl??? HCO3 ??? type water in one third samples suggest that ion exchange and dissolution processes are responsible for its origin. Change in storage of aquifer in a season does not influence the major geochemical makeup of groundwater. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The aquifer material mineralogy together with semiarid climate, poor drainage system, and low precipitation factors played major role in controlling groundwater quality of the area.  相似文献   

4.
A field study was conducted to determine persistence and bioaccumulation of oxyflorfen residues in onion crop at two growth stages. Oxyfluorfen (23.5% EC) was sprayed at 250 and 500 g ai/ha on the crop (variety, N53). Mature onion and soil samples were collected at harvest. Green onion were collected at 55 days from each treated and control plot and analyzed for oxyfluorfen residues by a validated high-performance liquid chromatography method with an accepted recovery of 78–92% at the minimum detectable concentration of 0.003 μg g???1. Analysis showed 0.015 and 0.005 μg g???1 residues of oxyfluorfen at 250 g a.i. ha???1 rate in green and mature onion samples, respectively; however, at 500 g a.i.ha???1 rates, 0.025 and 0.011 μg g???1 of oxyfluorfen residues were detected in green and mature onion samples, respectively. Soil samples collected at harvest showed 0.003 and 0.003 μg g???1 of oxyfluorfen residues at the doses 250 and 500 g a.i. ha???1, respectively. From the study, a pre-harvest interval of 118 days for onion crop after the herbicide application is suggested.  相似文献   

5.
Nitrogen (N) deposition has doubled the natural N inputs received by ecosystems through biological N fixation and is currently a global problem that is affecting the Mediterranean regions. We evaluated the existing relationships between increased atmospheric N deposition and biogeochemical indicators related to soil chemical factors and cryptogam species across semiarid central, southern, and eastern Spain. The cryptogam species studied were the biocrust-forming species Pleurochaete squarrosa (moss) and Cladonia foliacea (lichen). Sampling sites were chosen in Quercus coccifera (kermes oak) shrublands and Pinus halepensis (Aleppo pine) forests to cover a range of inorganic N deposition representative of the levels found in the Iberian Peninsula (between 4.4 and 8.1 kg N ha?1 year?1). We extended the ambient N deposition gradient by including experimental plots to which N had been added for 3 years at rates of 10, 20, and 50 kg N ha?1 year?1. Overall, N deposition (extant plus simulated) increased soil inorganic N availability and caused soil acidification. Nitrogen deposition increased phosphomonoesterase (PME) enzyme activity and PME/nitrate reductase (NR) ratio in both species, whereas the NR activity was reduced only in the moss. Responses of PME and NR activities were attributed to an induced N to phosphorus imbalance and to N saturation, respectively. When only considering the ambient N deposition, soil organic C and N contents were positively related to N deposition, a response driven by pine forests. The PME/NR ratios of the moss were better predictors of N deposition rates than PME or NR activities alone in shrublands, whereas no correlation between N deposition and the lichen physiology was observed. We conclude that integrative physiological measurements, such as PME/NR ratios, measured on sensitive species such as P. squarrosa, can provide useful data for national-scale biomonitoring programs, whereas soil acidification and soil C and N storage could be useful as additional corroborating ecosystem indicators of chronic N pollution.  相似文献   

6.
Dry deposition samples collected during 1999–2001 at a South China site using surrogate surfaces were analyzed by capillary electrophoresis. Collector surface properties played important roles to the dry deposition. The deposition velocities for various species ranged from 0.02 to 1.69 cm s???1, in general agreement with literature values. More than 90% of Ca2?+? was deposited by sedimentation and its comparable values of dry or wet removal residence times imply that dry deposition is an important atmospheric removal process for the ubiquitous crustal species in South China, compared with precipitation scavenging. Relatively good agreement was found when the species deposition velocities were modeled based on up-to-date knowledge of particle dry deposition. The total depositions for anthropogenic and crustal species in northern China are likely to be much higher than those in the south, including our site where the fluxes of the acidic species SO4 2??? and NO3 ??? were 4.4 and 2.2 g m???2 year???1, respectively. The sum of dry deposition for cations Na?+?, Ca2?+?, Mg2?+?, and K?+? contributes 44% of the total flux, which is equivalent to the value estimated in Europe.  相似文献   

7.
An experiment has been conducted under laboratory conditions to investigate the effect of decomposition of two edible oil cakes, viz. mustard cake (Brassica juncea L) and groundnut cake (Arachis hypogaea L), and two non-edible oil cakes, viz. mahua cake (Madhuca indica Gmel) and neem cake (Azadirachta indica Juss), at the rate of 5.0 t ha?1 on the changes of microbial growth and activities in relation to transformations and availability of some plant nutrients in the Gangetic alluvial (Typic Haplustept) soil of West Bengal, India. Incorporation of oil cakes, in general, highly induced the proliferation of total bacteria, actinomycetes, and fungi, resulting in greater retention and availability of oxidizable C, N, and P in soil. As compared to untreated control, the highest stimulation of total bacteria and actinomycetes was recorded with mustard cake (111.9 and 84.3 %, respectively) followed by groundnut cake (50.5 and 52.4 %, respectively), while the fungal colonies were highly accentuated due to the incorporation of neem cake (102.8 %) in soil. The retention of oxidizable organic C was highly increased due to decomposition of non-edible oil cakes, more so under mahua cake (14.5 %), whereas edible oil cakes and groundnut cake in particular exerted maximum stimulation (16.7 %) towards the retention of total N in soil. A similar trend was recorded towards the accumulation of available mineral N in soil and this was more pronounced with mustard cake (45.6 %) for exchangeable NH4 + and with groundnut cake (63.9 %) for soluble NO3 ?. The highest retention of total P (46.9 %) was manifested by the soil when it was incorporated with neem cake followed by the edible oil cakes; while the available P was highly induced due to the addition of edible oil cakes, the highest being under groundnut cake (23.5 %) followed by mustard cake (19.6 %).  相似文献   

8.
The HOBAS aeration system was tested to compare changes in environmental and bacteriological parameters in ponds growing Penaeus monodon during a single production cycle. The stocking density in the aerated pond was doubled to 12 post-larvae (PL) m???2 in contrast to the non-aerated pond with 6 (PL) m???2. Microbial abundance in the ponds ranged between 105???6 cells ml???1. Among the physiological groups of bacteria enumerated, the heterotrophs dominated with an abundance of 104 CFU ml???1. Of the nitrogen and sulfur cycle bacteria, the nitrifiers flourished in the aerated pond and could maintain ammonia-N concentration within permissible levels. Bacterial activity also maintained sulfide concentrations at <?0.03 mg l???1. Non-aerated conditions promoted denitrification maintaining nitrate concentration between 0.32 and 0.98 μM NO3 ???-N l???1. However, a marked increase in ammonium content was observed in the non-aerated pond at the end of the culture period. Thus in high-density ponds, the aerators served to stimulate bacterial growth and activity which consequently maintained the quality of the water to match that of low-density ponds. Accordingly, these aerators could be effectively used to sustain higher yields. The effluent from the aerated pond is less likely to alter the redox balance of the receiving waters.  相似文献   

9.
To define water quality, the European Water Framework Directive (WFD) demands complex assessments through physicochemical, biological, and hydromorphological controls of water bodies. Since the biological assessment became the central focus with hydrochemistry playing a supporting role, an evaluation of the interrelationships within this approach deems necessary. This work identified and tested these relationships to help improve the quality and efficiency of related efforts. Data from the 384 km2 Weisseritz catchment (eastern Erzgebirge, Saxony, Germany and northern Bohemia, Czech Republic) were used as a representative example for central European streams in mountainous areas. The data cover the time frame 1992 to 2003. To implement WFD demands, the analysis was based on accepted German methods and classifications, WFD quality standards, and novel German methods for the biological status assessment. Selected chemical parameters were compared with different versions of the German Saprobic Index, based on macroinvertebrate indicator taxa. Relevant dependencies applicable for integrated stream assessment were statistically tested. Correlation analysis showed significant relationships. The highest scores were found for nutrients (NO2 ???, Ninorg, and total N), salinity (Cl???, SO4 2???, conductivity), and microelements (K?+?, Na?+?, Ca2?+?, Mg2?+?). The Saprobic Index used in the Integrated Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macro-invertebrates program seems to be the most sensitive indicator to correlate with chemical parameters.  相似文献   

10.
Traditional statistics, geostatistics, fractal dimensions, and geographic information systems (GIS) were employed to study the temporal?Cspatial variability of soil total nitrogen (TN) and total phosphorus (TP) levels in Xinji District, Hebei Province area of the North China Plain from 1980 to 2007. The results indicate that nutrient levels follow normal or lognormal distributions. The TN content was 0.59 ±0.155 g kg???1 in 2007, an increase of 0.44 g kg???1 compared with that of 1980. In 2007, the TP content was 1.21 ±0.227 g kg???1, an increase of 0.01 g kg???1 from 1980. The geostatistical analysis showed that the distribution of these soil nutrients in the study area exhibits a trend and anisotropy. The range and [C 0/(C 0?+?C)] of TN and TP in 1980 were all less than in 2007. The ordinary kriging interpolation method was used to analyze the nutrient contents differences between 1980 and 2007. The results indicate that soil TN levels have increased over the 27-year period, and the area where the TN level had increased by at least 0.4 g kg???1 was about 61.7% of the district. The area where the TP content increased covered about 58.4% of the district. The variance analysis indicated that land-use type had a clear influence on the distribution and change in TN and TP content. Using the 3-D box-counting dimension method combined with GIS, the fractal dimension of soil nutrient spatial distribution over the two periods showed that in 27 years, the fractal dimension of TN increased from 1.95 to 2.02, and the fractal dimension of TP increased from 1.89 to 2.01, indicating that the complexity of the spatial distribution of all nutrient contents had increased. This study can provide a basis for accurate fertilizing and to enhance the conversion of soil characteristics under different spatial scales.  相似文献   

11.
Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha?1) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.  相似文献   

12.
The nitrogen (N) deposition fluxes were investigated in eight typical forest ecosystems along the North–South Transect of Eastern China (NSTEC; based on the ChinaFLUX network) by ion-exchange resin (IER) columns from May 2008 to April 2009. Our results demonstrated that the method of IER columns was both labor cost saving and reliable for measuring dissolved inorganic nitrogen (DIN) deposition at the remote forest stations. The deposition of DIN in the throughfall ranged from 1.3 to 29.5 kg N ha?1 a?1, increasing from north to south along NSTEC. The relatively high average ratio of ammonium to nitrate in deposition (1.83) indicated that the N deposition along the NSTEC in China mostly originated in farming and animal husbandry rather than in industry and vehicle activities. For seasonal variability, the DIN deposition showed a single peak in the growing season in the northern part of NSTEC, while, in the southern part, it exhibited double-peaks in the early spring and the mid-summer, respectively. On the annual scale, the DIN deposition variations of the eight sites could be mainly explained by precipitation and the distances from forest stations to provincial capital cities.  相似文献   

13.
In this study, the concentrations of CO, non-methane hydrocarbons, NOX, SO2, benzene, toluene, ethylbenzene, xylene (BTEX), PM10, and PM2.5 were continuously monitored before and after the fireworks display during the traditional Lantern Festival from March 2?C7, 2007 in Yanshui Town, Taiwan. Major roads in Yanshui Town were surrounded by fireworks 13 km in length, with the display lasting for 45 min. More than 200 small firecracker towers popped up randomly in town, resulting in exceedingly inhomogeneous air quality until the end of display at 03:00 the next day, March 5. During the fireworks display, the hourly concentration of PM10 and PM2.5 at Yanshui Primary School reached about 429 and 250 ??g m???3, respectively, which is 10 times the normal level, and 6 s values even went as high as 1,046 and 842 ??g m???3, respectively. Similarly, BTEX concentration went up to about five to 10 times its normal value during the fireworks display. As indicated by the distribution of submicron particle sizes, the number of particles with a diameter less than 100 nm increased abruptly during the event period. Metal components with concentrations of more than 10 times higher than the normal value at Yanshui Primary School were Sr, K, Ba, Pb, Al, Mg, and Cu, in sequence. Among water-soluble ions, the content of K?+?, Mg2?+?, and Cl??? increased the most, all of which were related to the materials used in the fireworks. The results of this study indicate that fireworks can cause an abrupt increase in the concentration of trace substances in the air within a short period. Although the risks of these trace substances on public health remain to be further assessed, the study results can be utilized in the management of folk events.  相似文献   

14.
The Rengen Grassland Experiment in Germany, established in 1941, consists of the following fertilizer treatments applied under a two cut management: control, Ca, CaN, CaNP, CaNP-KCl, and CaNP-K2SO4. The aim of this study was (1) to identify effects of fertilizer application on biomass and species composition of bryophytes and (2) to investigate the impact of fertilizer application on macro- (N, P, K, Ca, Mg), micro- (Cu, Fe, Mn, Zn), and toxic (As, Cd, Cr, Pb, Ni) element concentrations in bryophyte biomass. In June 2006, Rhytidiadelphus squarrosus was the only bryophyte species recorded in the control. In treatment Ca, R. squarrosus was the dominant bryophyte species whereas Brachythecium rutabulum occurred sporadically only in a single plot of that treatment. The latter was the only bryophyte species collected in CaN, CaNP, CaNP-KCl, and CaNP-K2SO4 treatments. Dry matter accumulation of bryophytes was highest in the control (180 g m???2) followed by Ca (46 g m???2), CaNP (25 g m???2), CaNP-KCl (15 g m???2), CaNP-K2SO4 (9 g m???2), and CaN (2 g m???2) treatments. A negative correlation between biomass production of bryophytes and dry matter production of vascular plants was revealed up to a threshold value of 400 g m???2. Above this limit, biomass production of bryophytes remained obviously unaffected by further increase in biomass production of vascular plants. A significant effect of treatment on As, Cd, Cr, Fe, Mn, Ni, Pb, P, Ca, Mg, K, and N concentrations was revealed. Concentrations of these elements were a function of amount of elements supplied with fertilizers. Bryophytes seem to be promising bio-indicators not only for airborne deposition of toxic element but also for fertilizer introduced as well.  相似文献   

15.
Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored marshes dominated by Spartina maritima to provide support for restoration and management strategies that may offset negative aspects of eutrophication and climate change in estuarine ecosystems. Sediment C content was between ca. 13 mg C g?1and sediment N content was ca. 1.8 mg N g?1. The highest C content for S. maritima was recorded in leaves and stems (ca. 420 mg C g?1) and the lowest in roots (361?±?4 mg C g?1). S. maritima also concentrated more N in its leaves (31?±?1 mg N g?1) than in other organs. C stock in the restored marshes was 29.6 t C ha?1; ca. 16 % was stored in S. maritima tissues. N stock was 3.6 t N ha?1, with 8.3 % stored in S. maritima. Our results showed that the S. maritima restored marshes, 2.5 years after planting, were sequestering atmospheric C and, therefore, provide some mitigation for global warming. Stands are also capturing nitrogen and reducing eutrophication. The concentrations of C and N contents in sediments, and cordgrass relative cover of 62 %, and low below-ground biomass (BGB) suggest restored marshes can sequester more C and N. S. maritima plantations in low marshes replace bare sediments and invasive populations of exotic Spartina densiflora and increase the C and N sequestration capacity of the marsh by increasing biomass production and accumulation.  相似文献   

16.
Using observations from two remote sites during July 2004 to March 2005, we show that at Akdala (AKD, 47° 06′ N, 87° 58′ E, 562 m asl) in northern Xinjiang Province, there were high wintertime loadings of organic carbon (OC), elemental carbon (EC), and water-soluble (WS) ${\rm SO}_{4}^{2-}$ , ${\rm NO}_{3}^{2-}$ , and ${\rm NH}_{4}^{+}$ , which is similar to the general pattern in most areas of China and East Asia. However, at Zhuzhang (ZUZ, 28° 00′ N, 99° 43′ E, 3,583 m asl) in northwestern Yunnan Province, the aerosol concentrations and compositions showed little seasonal variation except for a decreasing trend of OC from August to autumn–winter. Additionally, the OC variations dominated the seasonal variation of PM10 (particles ≤10 μm diameter) level. Chemical characteristics combined with transport information suggested sea salt origin of ionic Na?+?, Mg2?+?, and Cl??? at ZUZ. At AKD, ionic Ca2?+?, Mg2?+?, Na?+?, and Cl??? primarily originated from salinized soil. Furthermore, the WS Ca2?+? contributions (5.4–6%) to the PM10 mass during autumn, winter, and early spring reflected a constant dust component. The results of this study indicated that both sites were regionally representative. However, the representative regions and scales of these background sites may vary seasonally as the regional atmospheric transport patterns change. Seasonal variations in the background aerosol levels from these two areas need to be considered when evaluating the regional climate effects of the aerosols.  相似文献   

17.
This study performed on randomly selected seven sample plots in leguminous black locust (Robinia pceudoacacia L.) plantations and five sample plots in umbrella pine (Pinus pinea L.) plantations on coal mine soil/spoils. Soil samples were taken from eight different soil depths (0–1, 1–3, 3–5, 5–10, 10–20, 20–30, 30–40, and 40–50 cm) into the soil profile. On soil samples, bulk density, fine soil fraction (Ø < 2 mm), sand, silt and clay rates, soil acidity (pH), organic carbon (Corg), and total nitrogen (Nt) contents were investigated. Also, some forest floor properties (unit mass, organic matter, and total nitrogen) were determined, and results were compared statistically between umbrella pine and black locust. As a result, 17 years after plantations, total forest floor accumulation determined as 6,107 kg ha???1 under black locust compared to 13,700 kg ha???1 under umbrella pine. The more rapid transformation of leguminous black locust forest floor creates organic carbon that migrates further into the mineral profile, and rapid accumulation of C and N in the soil profile was registered. Slower transformation processes of forest floor under umbrella pine result in lower soil N ratio and greater quantity of forest floor. Higher soil pH under leguminous black locust was determined significantly than umbrella pine. In conclusion, the composition of symbiotic nitrogen fixation of black locust appears to be a possible factor favoring carbon and nitrogen accumulation and, consequently, soil development. Clearly, both tree species have favorable impacts on initial soil formation. The umbrella pine generates the more forest floor layer; in contrast, black locust forest floor incorporates into the soil more rapidly and significantly increases soil nitrogen in upper soil layers.  相似文献   

18.
Pine wilt disease (PWD) is caused by a non-native pest that has spread extensively throughout Japan. Previous research has indicated that most infected trees have died and the litter deposited has resulted in changes to stream-water chemistry, particularly increased nitrate (NO 3 ? ) concentrations. In this study, we divided stream nitrogen (N) export into N loss due to PWD and baseline N leakage without disturbance based on long-term monitoring. The annual N export was 110.0 mol N ha?1 year?1 in 1990 and 749.8 mol N ha?1 year?1 in 1997, and had decreased to 37.0 mol N ha?1 year?1 in 2005. N export under PWD influence was estimated to be 3697 mol N ha?1, and N loss due to PWD was 2810 mol N ha?1. N loss due to PWD was three times larger than baseline N leakage for the disturbed period. These changes in plant–herbivore relationships could affect N status in a forest ecosystem. So-called “semi-natural” disturbances related to non-native species invasion and increases of atmospheric N deposition caused by human activity will increase. Long-term monitoring studies of various aspects are necessary to offer insight into this ecosystem.  相似文献   

19.
Particles with aerodynamic diameters <10  $\upmu $ m (PM10) and particles with aerodynamic diameters <2.5  $\upmu $ m (PM2.5) were sampled during summer 2006 in Beijing and mass concentrations, water-soluble ionic compounds concentrations, and acidic buffer capacity were analyzed. Results show that the mass concentration ranges of PM10 and PM2.5 were from 56.4 to 226.6  $\upmu $ g/m3 and from 31.3 to 200.7  $\upmu $ g/m3 during sampling days, respectively. Concentrations of F???, Cl???, NO $_{3}^{\,\,-}$ , NO $_{2}^{\,\,-}$ , SO $_{4}^{\,\,2-}$ , Ac???, Ca2?+?, Na?+?, K?+?, Mg2?+?, and NH $_{4}^{\,\,+}$ in particles were analyzed by ion chromatography. Microtitration was adapted to determine the acidic?Cbasic property and the change of the buffering systems in different pH of the aqueous solution in which the PM is suspended. The major alkalinity and buffer capacity of particles were analyzed and calculated. The average carbonate buffer capacity was 0.3 mmol/g in PM2.5 and 0.7 mmol/g in PM10. The average acetic acid buffer capacity was 0.1 mmol/g in PM2.5 and 0.3 mmol/g in PM10. Carbonate and acetic acid are the main species for the buffer capacity in the particle phase. The average mass of carbonate was 71.0 mg/g in PM10 and 46.7 mg/g in PM2.5. The average mass of acetic acid was 11.2 mg/g in PM2.5 and 20.0 mg/g in PM10.  相似文献   

20.
The hydrochemistry of groundwater in the Densu River Basin, Ghana   总被引:1,自引:0,他引:1  
Hydrochemical analyses of groundwater samples were used to establish the hydrochemistry of groundwater in the Densu River Basin. The groundwater was weakly acidic, moderately mineralized, fresh to brackish with conductivity ranging from of 96.6 μS cm???1 in the North to 10,070 μS cm???1 in the South. Densu River basin have special economic significance, representing the countries greatest hydrostructure with freshwater. Chemical constituents are generally low in the North and high in the South. The order of relative abundance of major cations in the groundwater is Na?+??> Ca2?+??> Mg2?+??> K?+? while that of anions is Cl????> HCO $_{3}^{-} >$ SO $_{4}^{2-} >$ NO $_{3}^{-}$ . Four main chemical water types were delineated in the Basin. These include Ca–Mg–HCO3, Mg–Ca–Cl, Na–Cl, and mixed waters in which neither a particular cation nor anion dominates. Silicate weathering and ion exchange are probably the main processes through which major ions enter the groundwater system. Anthropogenic activities were found to have greatly impacted negatively on the quality of the groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号