首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Uye  C. Huang  T. Onbe 《Marine Biology》1990,104(3):389-396
The ontogenetic diel vertical migration of the planktonic copepodCalanus sinicus was investigated in the Inland Sea of Japan in summer 1988, when the water was thermally stratified with a thermocline of ca 5 °C between 35 and 45 m. Stage-specific differences in the diel vertical migration behavior ofC. sinicus were found. Eggs were spawned primarily within the surface-waters between midnight and dawn by ascending females, and sank gradually to deeper waters until they hatched into nauplii. Non-feeding nauplius stages (NI and II) were distributed throughout the water column, but the first feeding stage (NIII) performed an ontogenetic upward migration. NIV to VI and copepodite (C) stages I to III continuously aggregated in the phytoplankton-rich euphotic layer. However, the depth of the median CI to III populations descended as stage progressed. The onset of prominent diel vertical migration took place in CIV, and the amplitude of vertical migration increased with age, being maximal in adult females (CVI). Adult males (CVI), however, remained in the layer below 20 m, and did not migrate dielly. The ecological significance of ontogenetic diel vertical migration is discussed.  相似文献   

2.
C. Huang  S. Uye  T. Onbé 《Marine Biology》1993,117(2):289-299
The ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus was investigated in the Inland Sea of Japan in June 1989, when the water column was thermally weakly stratified. Because of fewer eggs and less variation in their abundance, nocturnal spawning was not apparent. A pronounced upward migration occurred in NIII. NIII to CIII resided in the upper 20 m layer throughout the day, and from CIV on their median depths descended. CV and adult females underwent significant diel vertical migration, whereas adult males did not migrate. By integrating the results from the present study and those from our previous investigations (in August–September 1988, November 1988 and March 1989), we review seasonal variation in the ontogenetic diel vertical migration of C. sinicus. Spawning was largely nocturnal, reaching its maximum level around dawn, but spawning depth and fecundity changed seasonally. The distribution of pre-feeding stages, NI and NII, was similar to that of eggs. A pronounced upward migration always occurred in the first feeding stage, NIII, and late nauplii and early copepodites always resided in the food-rich upper layer, indicating that upward migration by NIII is feeding migration. As the stages progressed, they extended their vertical distribution range, and CV and adult females usually underwent diel vertical migration. However, the pattern and strength of this migration differed seasonally. Their day depths increased with the increase of relative biomass of planktivorous fish, indicating that predator avoidance induces their diurnal downward migration. High chlorophyll a concentrations in the upper layer (<15 m deep) relative to the lower layer (>20 m deep) amplified their diel vertical migrations. Diel vertical migration of C. sinicus is a phenotypic behavior.  相似文献   

3.
J. Vidal 《Marine Biology》1980,56(2):111-134
Changes in dry weight and in weight-specific growth rates were measured for copepodite stages of Calanus pacificus Brodsky and Pseudocalanus sp. cultured under various combinations of phytoplankton concentration and temperature. Mean dry weight of early copepodites was relatively unaffected by either food concentration or temperature, but mean dry weight of late stages increased hyperbolically with food concentration and was inversely related to temperature. The food concentration at which maximum body weight was attained increased with increasing temperature and body size, and it was considerably higher for C. pacificus than for Pseudocalanus sp. This suggests that final body size of small species of copepods may be determined primarily by temperature, whereas final body size of large species may be more dependent on food concentration than on temperature. Individual body weight increased sigmoidally with age. The weight-specific growth rate increased hyperbolically with food concentration. The maximum growth rate decreased logarithmically with a linear increase in body weight, and the slope of the lines was proportional to temperature. The critical food concentration for growth increased with body size proportionally more at high than at low temperature, and it was considerably higher for C. pacificus than for Pseudocalanus sp. Because of these interactions, early copepodites optimized growth at high temperature, even at low food concentrations, but under similar food conditions late stages attained higher growth at low temperature. The same growth patterns were found for both species, but the rates were significantly higher for the larger species, C. pacificus, than for the smaller one, Pseudocalanus sp. On the basis of findings in this study and of analyses of relationships between the maximum growth rate, body size, and temperature from other studies it is postulated (1) that the extrapolation of growth rates from one species to another on the basis of similarity in body size is not justified, even for taxonomically related species; (2) that the allometric model is inadequate for describing the relationship between the maximum weight-specific growth rate and body size at the intraspecific level; (3) that the body-size dependence of this rate is strongly influenced by temperature; and (4) that species of zooplankton seem to be geographically and vertically distributed, in relation to body size and food availability, to optimize growth rates at various stages of their life cycles.Contribution No. 1127 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

4.
J. Vidal 《Marine Biology》1980,56(2):135-146
Developmental time and stage duration for Calanus pacificus Brodsky and Pseudocalanus sp. and the rate of loss of body carbon by molting for C. pacificus were estimated for copepodite stages cultured under various combinations of phytoplankton concentration and temperature. Mean development time and stage duration for C. pacificus decreased hyperbolically with increasing food concentration, and the minimum time required for reaching a given stage decreased logarithmically with a logarithmic increase in temperature. Low temperature retarded the development of early stages proportionally more than that of late stages, and stage duration increased logarithmically with increasing body weight. Therefore, copepodite development was not isochronal. The rate of loss of body carbon by molting was small, ranging from 0.2 to 2% day-1. This rate increased hyperbolically with food concentration and was linearly related to the growth rate. The critical food concentration for the rates of development and molting increased with temperature and stage of development, but these rates were less dependent on food concentration than the growth rate. The development rate of Pseudocalanus sp. was higher than that of C. pacificus, and was less influenced by changes in food concentration and temperature. It is postulated that the inverse relationship between temperature and body size results from a differential effect of temperature and body size on the rates of growth and development. That is, with increasing body size the growth rate tends to become temperature-independent, but the development rate remains proportional to temperature. Thus, copepodites growing at low temperature can experience a greater weight increment between molting periods than individuals growing at high temperature, because the growth rate is similar at all temperatures but stage duration is longer at low temperature.Contribution No. 1128 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

5.
C. Huang  S. Uye  T. Onbé 《Marine Biology》1992,113(3):391-400
The ontogenetic diel vertical migration of the planktonic copepod Calanus sinicus was investigated in the Inland Sea of Japan in November 1988 and March 1989, when the water temperature was weakly stratified in a reversed manner. In both investigations a pronounced ontogenetic difference in vertical distribution was found. Spawning always occurred during nighttime, being confined to the upper 40 m water column in November but to the layer below 35 m in March. The distribution of pre-feeding nauplius stages, NI and NII, was more or less similar to that of the eggs. The first-feeding NIII performed a marked upward migration, and late nauplius stages (NIV to NVI) and early copepodite stages (CI and CII) continuously aggregated in the upper water column where phytoplankton was abundant. CIII to CVI (adult female and male) tended to disperse in the whole water column. In November, however, they avoided the upper 10 m strate during daytime and some individuals migrated upward to the surface during nighttime. In March, CV and CVI aggregated in the layer between 5 and 15 m deep in the daytime and migrated both upward and downward at dusk, resulting in homogeneous distributions during the nighttime.  相似文献   

6.
Vertical distribution, life cycle, and developmental characteristics of the mesopelagic copepod Gaidius variabilis Brodsky in the Oyashio region were investigated by combining analyses of field copepodite populations with laboratory-rearing data of egg hatching and naupliar development. Field samplings from five discrete depths between the surface and ≤2000 m were made approximately every month for 1 year. Most populations of G. variabilis occurred between 600 and 1000 m depth. A modest degree of reversed diel vertical migration behavior and some stage-specific depth-distribution patterns were noted. All copepodite stages were observed throughout the year, suggesting a year-round spawning of G. variabilis. From a prominent abundance peak of Copepodite Stage 1 (C1) seen in June to August, together with development times of eggs and nauplii obtained in laboratory-rearing experiments, the major spawning season was extrapolated to be April to June, the phytoplankton bloom season. Tracing the peak abundance of each copepodite stage (distinguishing males and females for C4 to C6), the generation times of males and females were deduced as 2 and 1 year, respectively. All between-stage increments in terms of wet-, dry-, and ash-free dry weights were greatest in C3/C4, and least in C5/C6 for both males and females. The increments in C3/C4 and C4/C5 were greater for males than for females, reflecting a longer stage duration of the males. These weights did not increase in C5/C6 males, possibly because feeding ceased in C6 males. These results for G. variabilis are compared with those for some mesopelagic copepods previously reported from other regions. Received: 25 October 1999 / Accepted: 20 March 2000  相似文献   

7.
The abundance, vertical distribution and population structure of two important small calanoid copepod species, Microcalanus pygmaeus (G. O. Sars) and Ctenocalanus citer Heron and Bowman, were studied in the eastern Weddell Sea in summer (January/February 1985), in late winter/early spring (October/November 1986) and in autumn (April/May 1992). The population of Microcalanus pygmaeus consisted mainly of copepodite stages CII and CIII in late winter/early spring and were concentrated between 500 and 200 m depth. In summer, stage CIV was the modal stage and the bulk of the population had ascended above 300 m. In autumn the population structure was bimodal with CI and CV dominating. Most of the population was concentrated between 300 and 200 m. In all investigation periods M. pygmaeus had their maximal concentrations in the thermo-pycnocline. The developmental stages CIII to CV of Ctenocalanus citer formed the bulk of the population in late winter/early spring. In October all developmental stages had their main distribution between 500 and 200 m, except females, which were concentrated in the upper 50 m. In November most of the population occurred between 200 and 50 m. The summer population was concentrated in the upper 50 m, and numbers increased dramatically as the new cohort hatched. Copepodite stages CII and CIII dominated the population at the end of January, while CIV dominated 2 wk later. In autumn, CV was the modal stage. The majority of the population was concentrated in the upper 100 m, but there was an increase in abundance below 300 m compared to summer. Age structure changed with depth with a younger surface population and an older one in deeper water layers. The seasonal change in number of M. pygmaeus is much smaller than that of C. citer; the summer:winter:autumn ratio of the former being about one, whereas the winter:summer/autumn of the latter was about nine. Early copepodite stages and adults of M. pygmaeus occurred throughout all investigation periods. The large proportion of early copepodite stages in April and in mid-October suggests autumn and early to midwinter breeding. Apparently, M. pygmaeus may reproduce and grow year-round or perhaps has a 2-yr life-cycle. In contrast, the dramatic increase in abundance of early copepodite stages of C. citer in summer suggests springtime reproduction.  相似文献   

8.
We evaluated the duration of Copepodite Stages C1 to C6, the biological cycle and the number of annual generations of the planktonic copepod Acartia clausi in a meso-oligotrophic area of the eastern Mediterranean Sea (Saronikos Gulf, Greece). The results were based on 95 zooplankton samples collected during the period November 1988 through June 1990, at intervals of 1, 2, 7 and 15 d, the sampling intervals being dependent on the abundance of A. clausi. Time-series analysis (cross-correlation) of fluctuations in the comparative abundance (percentages) of the copepodite stages present was used to determine the duration of the development stages and generation length. This methodology could significantly contribute to the identification of cohorts, and hence to the estimation of stage duration, from field data for a given copepod species. The development of A. clausi stages was not isochronal; duration of the first copepodite stage was shorter than that of the last three stages. The mean generation length estimated (28.6 d) is among the highest recorded in the literature for A. clausi at the range of temperatures prevailing in the area (13 to 25°C). Throughout the year there were four or five generations. The possible limiting role of food availability on the duration of each stage and hence on generation length is also discussed.  相似文献   

9.
Three populations of Oreaster reticulatus (Linnaeus, 1758) inhabiting shallow-water (<4 m) seagrass habitats in the Grenadines (West Indies, Caribbean Sea) were associated predominantly with beds of Halodule wrightii. Occupation of fringing inshore areas of bare sand was inversely related to wave action; even where sandy patches occurred offshore, the preferred substratum was H. wrightii. The association of O. reticulatus with H. wrightii is related to the asteroid's microphagous feeding habit and the availability of food resources associated with the seagrass. O. reticulatus rarely occurred on dense beds of Thalassia testudinum, but was moderately abundant in areas of sparse cover. Differences in the occurrence of O. reticulatus among seagrass types may be related to factors afdecting foraging effort, such as the tractability of the substratum and mobility upon it. Populations of O. reticulatus exhibited an aggregated dispersion within beds of H. wrightii, possibly attributable to local substratum heterogeneity and/or reproductive behavior. Increased turbulence induced migration to deeper water and markedly increased aggregation along offshore boundaries. The populations were primarily adults, with some late juvenile stages. The paucity of juveniles and their cryptic behavior and coloration suggest that settlement and early postmetamorphic development occurs in alternate habitats, such as dense beds of T. testudinum. Interpopulation differences in size structure may be associated with differences in the quality and availability of food sources.  相似文献   

10.
Monthly samples were collected in oceanic waters off Discovery Bay, Jamaica, in 60- and 200-m vertical hauls, using 200- and 64-m mesh plankton nets, from June 1989 to July 1991. Length-weight regressions were derived for twelve genera of copepods (R2=0.79 to 0.97). For eight occasions spanning the study period, biomass estimates generated from these length-weight regressions differed by only 3% from direct weight determinations. The mean ash content of copepods was 7.1%, and the energy density was 20.8 kJ g-1 ash-free dry weight (AFDW). Mean annual biomass of the total copepod community in the upper 60 m was 1.83 mg AFDW m-3 (range 1.14 to 2.89 mg AFDW m-3), and for the 200-m water column was 0.96 mg AFDW m-3 (range 0.12 to 1.99 mg AFDW m-3). Estimates of generation times for five common taxa ranged from 16.1 to 33.4 d. None of the taxa investigated displayed isochronal development; in general, stage duration increased in later copepodite stages. Weight increments showed a significant decrease in later copepodite stages, but with strong reversal of the trend from stage 5 to adult female in most species. Daily specific growth rates also declined in later copepodite stages, and ranged from 1.49 d-1 in stage 1–2 Paracalanus/Clausocalanus spp. to 0.04 in stage 5-female of Oithona plumifera. Progressive food limitation of somatic copepodite growth and egg production is postulated. Naupliar production was 50.4 to 59.5% of copepodite production, and egg production was 35.1 to 27.7% of copepodite production in the 60-and 200-m water columns, respectively. Total annual copepod production, including copepodites, nauplii, eggs and exuviae, was 160 kJ m-2 yr-1 for the upper 60 m and 304 kJ m-2 yr-1 for the upper 200 m. Secondary production of the copepod community in oceanic waters off Discovery Bay approaches 50% of the corresponding value in tropical neritic waters.  相似文献   

11.
Weekly samples were collected near Kingston, Jamaica in 27 m vertical hauls, using 200 and 64µm mesh plankton nets, from July 1985 to January 1987. Thirtytwo copepod species were identified; nauplii and all copepodite stages were enumerated. Total copepod abundance ranged from 2.56 to 87.3 × 104 m–2. The annual abundance cycle was bimodal with peaks in October–November and May–June corresponding to the rainy seasons. Mean annual copepodite biomass was 0.15 g AFDW m–2 ranging from 0.03 to 0.41 g AFDW m–2. Mean generation time (from egg to adult) at 28°C was 19.5 d for the common speciesCentropages velificatus, Paracalanus aculeatus, andTemora turbinata. Isochronal development was demonstrated for copepodites ofP. aculeatus andT. turbinata, but not forC. velificatus. Mean daily specific growth rates (G) were 0.63, 0.63, and 0.48 d–1 forC. velificatus, P. aculeatus, andT. turbinata, respectively. In general, daily specific growth rates decreased in the later copepodite stages. Thus, it is postulated that growth of later stages and egg production may be food limited. Annual copepodite production was estimated as 419 kJ m–2 yr–1, while annual exuvial production and naupliar production were 35 and 50 kJ m–2 yr–1, respectively. Egg production was estimated as 44% (184 kJ m–2 yr–1) of the total copepodite production. Thus, mean total annual copepod production was 688 kJ m–2 yr–1. This estimate is within the range of copepod production estimates in coastal temperate regions.  相似文献   

12.
Experiments were carried out to determine growth and development rates of the herbivorous copepod Calanus finmarchicus (Gunnerus) under natural conditions during the phytoplankton spring bloom in the northern North Sea. From 28 April to 25 May 1983 copepodite stages I, IV and V were incubated for a 3-d period on board a ship in vessels with naturally occurring phytoplankton or cultured algae as food. Highest rates of growth and development were achieved while the diatom Chaetoceros sp. was the dominant phytoplankton organism. These rates decreased considerably when this chain-forming diatom was succeeded after one week by the small-celled diatom Thalassiosira conferta. Again one week later, during the bloom of the succeeding colonial microflagellate Corymbellus aureus, copepodite stage IV still managed to maintain moderate rates of growth and development, but these rates dropped to almost zero in CV, suggesting the start of a resting stage. Nevertheless, brood collected from this generation and from Calanus helgolandicus (Claus) was raised in the laboratory to the adult stage at high speed. Since temperature and the total phytoplankton concentration in the sea remained almost constant it seems that the retardation and arrestment of growth and development were an immediate response to a qualitative change of the food composition related to the successive blooms of different algal species.  相似文献   

13.
J. Vidal 《Marine Biology》1980,56(3):195-202
Weight-specific rates of oxygen consumption of actively feeding copepodite stages ofCalanus pacificus Brodsky were measured under various combination of phytoplankton concentration and temperature. The rate decreased logarithmically with a logarithmic increase in dry body weight of copepods, and the relationship between these variables was described using a log-transformed allometric equation. The body-size dependence of the metabolic rate was independent of changes in food concentration and temperature, but the metabolic level increased linearly with a logarithmic increase in temperature and was not significantly affected by changes in food concentration. Respiration rates measured in this study forC. pacificus were about twice as high as rates reported for unfed closely related species of the same genus. An analysis of the metabolic cost of feeding processes suggests that metabolic models derived from feeding models may be of little ecological value at present.Contribution No. 1129 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

14.
Sixty-eight yellowfin tuna, Thunnus albacares, (60-135 cm fork length) were caught and released with implanted archival tags offshore off Baja California, Mexico, during October 2002 and October 2003. Thirty-six fish (53%) were recaptured and the data were downloaded from all 36 recovered tags. Time at liberty ranged from 9 to 1,161 days, and the data were analyzed for the 20 fish that were at liberty for 154 or more days. The accuracy in the position estimates, derived from light-level longitude data and sea-surface temperatures (SSTs) based latitude, is about 0.41° in longitude and 0.82° in latitude, in this region. The movement paths, derived from position estimates, for the 20 yellowfin indicated that 19 (95%) remained within 1,445 km of their release locations. The estimated mean velocity along movement paths was 77 km/day. The southern and northern seasonal movement paths observed for yellowfin off Baja California are influenced by the seasonal movements of the 18°C SST isotherm. Cyclical movements to and from suitable spawning habitat (≥24°C SST) was observed only for mature fish. For the 12 fish that demonstrated site fidelity, the mean 95 and 50% utilization distributions were 258,730 km2 and 41,260 km2, respectively. Evaluations of the timed depth records resulted in discrimination of four distinct behaviors. When exhibiting type-1 diving behavior (78.1% of all days at liberty) the fish remained at depths less than 50 m at night and did not dive to depths greater than about 100 m during the day. Type-2 diving behavior (21.2% of all days at liberty) was characterized by ten or more dives in excess of 150 m during the day. Type-2 diving behavior is apparently a foraging strategy for fish targeting prey organisms of the deep-scattering layer during the day, following nighttime foraging within the mixed layer on the same prey. Yellowfin tuna exhibited occasional deep-diving behavior, and some dives exceeded 1,000 m, where ambient temperatures were less than 5°C. Surface-oriented behavior, defined as the time fish remained at depths less than 10 m for more than 10 min, were evaluated. The mean number and duration of surface-oriented events per day for all fish was 14.3 and 28.5 min, respectively. Habitat utilization of yellowfin, presented as monthly composite horizontal and vertical distributions, indicates confined geographical distributions, apparently resulting from an affinity to an area of high prey availability. The vertical distributions indicate greater daytime depths in relation to a seasonally deeper mixed layer and a greater proportion of daytime at shallower depths in relation to a seasonally shallower mixed layer.  相似文献   

15.
The vertical distribution of the eggs and larvae of the European anchovy (Engraulis encrasicolus) in the western Mediterranean Sea in June 1984 and Agust 1985 was analyzed based on multiple plankton tows carried out at varying depths and using nets equipped with opening and closing mechanisms. Hydrographic parameters such as temperature, salinity, and chlorophylla were recorded simultaneously. Maximum abundance of anchovy eggs and larvae always occurred above the thermocline, even when maximum chlorophylla concentrations were located below the thermocline. Larval distribution appeared to be associated with the availability of suitable food organisms. As in other clupeoid species, the anchovy larvae carried out vertical migrations related to the photoperiod.  相似文献   

16.
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR), the Longhurst Hardy Plankton Recorder (LHPR) and by our colleagues from other participating Institutes during the Fladen Ground Experiment (FLEX 76) were used to describe the vertical distribution and population dynamics of Calanus finmarchicus (Gunnerus) and to provide estimates of the production and carbon budget of the population from 19 March to 3 June, 1976. Total production of the 19 March to 3 June, 1976. Total production of the nauplii and copepodite stages (including adults), during the exponential growth phase in May, was estimated to be in the range of 0.49 to 0.91 g C m-2 d-1 or 29.0 to 55 g dry wt m-2 (14.5 to 27.8 g C m-2) for the three successive 10 d periods in May. Two gross growth efficiencies (K 1) (20 and 34%), together with the lower value of C. finmarchicus production, were used to calculate the gross ingestion levels of algae as 2.45 and 1.44 g C m-2 d-1 (73.5 and 43.2 g C m-2 over the May period). These ingestion levels, together with the algae ingested by other zooplankton species, are greater than the estimated total phytoplankton production of 45.9 g C m-2 over the FLEX period. A number of factors are discussed which could explain the discrepancies between the production estimates. One suggestion is that the vertical distribution of the development stages of this herbivorous copepod and their diel and ontogenetic migration patterns enable it to efficiently exploit its food source. Data from the FLEX experiment indicated that the depletion of nutrients limited the size of the spring bloom, but that it was the grazing pressure exerted by C. finmarchicus which was responsible for the control and depletion of the phytoplankton in the spring of 1976 in the northern North Sea.JONSDAP Contribution No. 51  相似文献   

17.
Vertical distributions of the larval stages of Euphausia nana Brinton and E. similis G. O. Sars in Sagami Bay and Suruga Bay, Central Japan were studied. Most of the metanauplius larvae of E. nana occurred between 25 and 80 m depth, and they were found at greater depths than the eggs and calyptopis larvae. The nauplii and metanauplii of e. similis were mainly found between 50 and 100 m depth, and they also occurred deeper than the eggs and calyptopes. The larvae of the two species from calyptopis I demonstrate diurnal vertical migration. However, this phenomenon was not clear in the season (March) when a seasonal thermocline was absent. Calyptopes and fruciliae of E. similis occurred deeper and migrated over greater vertical distances than those of E. nana. The distance of migration of furcilia I larvae of E. similis was estimated to be about 200 m.  相似文献   

18.
Studies off the west coast of Australia showed that the phyllosoma larvae of Panulirus cygnus George undergo a diurnal vertical migration, with light as an important factor influencing the depth distribution of all 9 phyllosoma stages. The early stages (I to III) occurred at the surface at night regardless of moonlight intensity, whereas late stages (VI to IX) concentrated at the surface only on nights with less than 5% of full moonlight. Midday peak densities of early-stage larvae occurred in the 30 to 60 m depth range while those of mid (IV to VI) and late stages were in the 50 to 120 m range. Depths of peak densities of larvae increased with distance offshore. The limits of vertical distribution of the phyllosoma remained within ranges of illuminance which were estimated to be in the order of 50 to 250 E m-2 sec-1 for early stages, 20 to 200 E m-2 sec-1 for mid stages and 5 to 50 E m-2 sec-1 for late stages. Minimal rates of net vertical movement were estimated for the larvae. Early stages exhibited mean net rates of ascent and descent of 13.7 and 13.0 m h-1, respectively, while the rates for mid stages were 16.0 and 16.6 m h-1 and for late stages 19.4 and 20.1 m h-1. Diurnal migrations and vertical distribution are shown to have a vital role in the relationships between circulation in the south-eastern Indian Ocean and the transport and dispersal of the phyllosoma larvae. The diurnal migrations of early stages place them at the surface at night, when offshore vectors of wind-driven ocean-surface transport dominate, and below the depth of wind-induced transport during the day, when offshore vectors are small or negative, thus accounting for their offshore displacement. Mid and late stages, because of their deeper daytime distribution and absence from the surface on moonlight nights, are predominantly subject to circulation features underlying the immediate surface layer. This is hypothesized to account for the return of the phyllosoma to areas near the continental shelf edge by subjecting them to a coastward mass transport of water which underlies the immediate surface layer.The western rock lobster is referred to as P. longipes or P. longipes cygnus in some of the literature quoted; these are synonymous with P. cygnus.  相似文献   

19.
Lipid compositions of the dominant Antarctic copepods Calanoides acutus, Rhincalanus gigas and Calanus propinquus from the Weddell Sea have been investigated in great detail. Copepods were collected during summer in 1985 and late spring/early winter in 1986. The analyses revealed specific adaptations in the lipid biochemistry of these species which result in very different lipid components. The various copepodite stages of C. acutus synthesize wax esters with long-chain monounsaturated moieties and especially the alcohols consisted mainly of 20:1(n-9) and 22:1(n-11). R. gigas also generates wax esters, but with moieties of shorter chain length. The fatty alcohols consisted mainly of 14:0 and 16:0 components, while the major fatty acids were 20:5, 18:4 and 22:6, of which 18:4 probably originated from dietary input. In contrast, C. propinquus accumulates triacylglycerols, a very unusual depot lipid in polar calanoid copepods. Major fatty acids in C. propinquus were the long-chain monounsaturates 22:1(n-9) and 22:1(n-11), which may comprise up to 50% of total fatty acids. In C. acutus and C. propinquus there was a clear increase of long-chain fatty acids with increasing developmental stage. In contrast, the fatty acid and alcohol composition of the R. gigas copepodite stages were characterized by the dominance of the polyunsaturated fatty acids as well as high amounts of the monounsaturates 18:1(n-9) and 16:1(n-7). There was a considerable decrease of the dietary fatty acid 18:4(n-3) towards the older stages during summer; in late winter/early spring 18:4 was only detected in very low amounts. This tendency was also found in the other two species, but was less pronounced. In all three species dry weight and lipid content increased exponentially from younger to older stages. The highest portion of wax esters, or of triacylglycerols in C. propinquus, was found in the adults. Dry weight and lipid content were generally higher during summer. In late winter/early spring the variability was more pronounced and lipid-rich specimens showed a selective retention of long-chain monounsaturated fatty acids, whereas in lipid-poor specimens these fatty acids were very much depleted.  相似文献   

20.
The seasonal and spatial distribution of Pseudocalanus acuspes in the Bornholm Basin (Central Baltic Sea) was studied on 16 cruises between March 2002 and May 2003 from stratified (10 m) multinet samples. The highest abundances were reached in May 2002 and April 2003 (618×103 and 869×103 ind. m−2, respectively). Ontogenetic vertical distribution was stage specific with differences of mean annual weighted mean depth >30 m between nauplii and males; it followed closely the hydrography which was characterized by a permanent halocline and a summer thermocline. The vertical distribution showed a positive correlation with salinity especially in the older developmental stages; the relationship to temperature was negative in the nauplii and copepodite stage I (CI). Most of the stages performed a seasonal migration. The consequences of the vertical distribution patterns in relation to the effects of climate and predation are discussed. A stage shift from nauplii in April/May to CIV and CV as overwintering stages indicated slow seasonal development. However, nauplii were observed all the year round, and the resulting stage structure did not allow to distinguish generations. Changes in the prosome length of females seemed to be related to the advection of water masses with different temperatures rather than to different generations. It could not be clarified whether the strong increase of nauplii and adults after an inflow event of cold, saline North Sea water in the beginning of 2003 was a result of advection or improvement in habitat conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号