首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580?±?20 μmol mol?1) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8–2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.  相似文献   

2.
The present study showed a possibility to use phenotypic and proteomic responses in rice plants as an in vivo biomarker to detect higher concentrations of ambient ozone (O3). The investigation was done on two cultivars of Indian rice using open top chambers ventilated with charcoal filtered air, ambient air, ambient air with 10 ppb O3 exposure and ambient air with 20 ppb O3 exposure at a rural site of Varanasi, India. Results showed that the magnitude of O3 induced specific type of foliar injury directly depends on the duration and concentration of O3 exposure. Even the internal protein profile of injured and normal leaf demonstrated a differential expression, which directly indicates towards the molecular basis of plant’s response against O3.  相似文献   

3.
We developed small and mobile open top chambers (mini-OTC) measuring 0.6 m (W)?×?0.6 m (D)?×?1.2 m (H) with an air duct of 0.6 m (W)?×?0.23 m (D)?×?1.2 m (H). The air duct can be filled with activated charcoal to blow charcoal filtered air (CF) into the chamber, as opposed to non-filtered ambient air (NF). Ozone sensitive radish Raphanus sativus cv. Red Chime and rosette pakchoi Brassica campestris var. rosularis cv. ATU171 were exposed to NF and CF in mini-OTCs at different locations in East Asia. A total of 29 exposure experiments were conducted at nine locations, Shanghai, China, Ha Noi, Vietnam, Lampang, Phitsanulok and Pathumtani, Thailand, and Hiratsuka, Kisai, Abiko and Akagi, Japan. Although no significant relationships between the mean concentrations of ambient O3 during the experimental period and the growth responses were observed for either species, multiple linear regression analysis suggested a good relationship between the biomass responses in each species and the O3 concentration, temperature, and relative humidity. The cumulative daily mean O3 (ppb/day) could be indirectly predicted by NF/CF based on the dry weight ratio of biomass, mean air temperature, and relative air humidity.  相似文献   

4.
Cities across the globe are considered as major anthropogenic sources of greenhouse gases (GHG), yet very few efforts has been made to monitor ambient concentration of GHG in cities, especially in a developing country like India. Here, variations in the ambient concentrations of carbon dioxide (CO2) and methane (CH4) in residential, commercial, and industrial areas of Delhi are determined from fortnightly daytime observations from July, 2008 to March, 2009. Results indicate that the average daytime ambient concentration of CO2 varied from 495 to 554 ppm in authorized residential areas, 503 to 621 ppm in the slums or jhuggies in the unauthorized residential areas, 489 to 582 ppm in commercial areas, and 512 to 568 ppm in industrial areas with an average of 541?±?27 ppm. CH4 concentration varied from 652 to 5,356 ppbv in authorized residential areas, 500 to15,220 ppbv in the unauthorized residential areas, 921 to 11,000 ppbv in the commercial areas, and 250 to 2,550 ppbv in the industrial areas with an average of 3,226?±?1,090 ppbv. A low mid-afternoon CO2 concentration was observed at most of the sites, primarily due to strong biospheric photosynthesis coupled with strong vertical mixing.  相似文献   

5.
根据西宁市13个环境空气监测站点2013—2017年大气污染物细颗粒物(PM2. 5)、可吸入颗粒物(PM10)、二氧化硫(SO_2)、二氧化氮(NO_2)、臭氧最大8 h平均(O_3-8h)和一氧化碳(CO)的监测数据,采用主分量分析法对西宁市环境空气质量进行了综合评估。结果表明,2013—2017年西宁市大部分环境空气监测站点周边环境空气质量逐渐提升,4个国控站综合得分(F)趋势变化幅度较大,其周边环境空气质量状况改善较为明显;城南新区、湟源县气象局和西钢监测站点周边环境空气质量呈逐年下降趋势,与其附近工业生产有关。  相似文献   

6.
Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h?day?1) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F v/F m) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F v/F m and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).  相似文献   

7.
An atmospheric pollution survey was carried out at 13 sites in Karachi, Pakistan, simultaneously from 0600 h to 2100 h for 15 consecutive days in May 1990 which also included meteorological measurements. The monitoring sites were included along the prevailing wind patterns in Karachi. Carbon monoxide levels in the ambient air were found to reach 9–10 ppm along the busy urban streets whereas CO2 level exceeded 370 ppm in these areas. Our survey indicates that NO2 levels were exceeding U.S. ambient air quality standards. Maxmum NO2 concentrations were observed (0.3–0.5 ppm) during the daytime from 0600 h to 2100 h. The surface ozone maximum around noon at the inland sites reached the levels of 40 ppb and 50 ppb respectively compared to upwind coastal Sites 1 level of 25 ppb. The Pb concentrations were approximately 3- to 7-fold higher than average, which corresponded well to urban air. Fossil fuel SO4 (excess) and NO3 were apportionally based on the assumption that these two anions were present as (NH4)2SO4, and NH4NO3 in the aerosols. In the eastern part of the city atmospheric sulphate (SO4) shows the combustion of coal as its source from the vicinity and downwind of a steel manufacturing plant.  相似文献   

8.
Changes in the soil labile carbon fractions and soil biochemical properties to elevated carbon dioxide (CO2) and temperature reflect the changes in the functional capacity of soil ecosystems. The belowground root system and root-derived carbon products are the key factors for the rhizospheric carbon dynamics under elevated CO2 condition. However, the relationship between interactive effects of elevated CO2 and temperature on belowground soil carbon accrual is not very clear. To address this issue, a field experiment was laid out to study the changes of carbon allocation in tropical rice soil (Aeric Endoaquept) under elevated CO2 and elevated CO2 + elevated temperature conditions in open top chambers (OTCs). There were significant increase of root biomass by 39 and 44 % under elevated CO2 and elevated CO2 + temperature compared to ambient condition, respectively. A significant increase (55 %) of total organic carbon in the root exudates under elevated CO2 + temperature was noticed. Carbon dioxide enrichment associated with elevated temperature significantly increased soil labile carbon, microbial biomass carbon, and activities of carbon-transforming enzyme like β-glucosidase. Highly significant correlations were noticed among the different soil enzymes and soil labile carbon fractions.  相似文献   

9.
In this study, environmental impact on air quality was evaluated for a typical Cement Industry in Nigeria. The air pollutants in the atmosphere around the cement plant and neighbouring settlements were determined using appropriate sampling techniques. Atmospheric dust and CO2 were prevalent pollutants during the sampling period; their concentrations were recorded to be in the range of 249–3,745 mg/m3 and 2,440–2,600 mg/m3, respectively. Besides atmospheric dust and CO2, the air pollutants such as NO x , SO x and CO were in trace concentrations, below the safe limits approved by FEPA that are 0.0062–0.093 mg/m3 NO x , 0.026 mg/m3 SO x and 114.3 mg/m3 CO, respectively. Some cost-effective mitigating measures were recommended that include the utilisation of readily available and low-cost pozzolans material to produce blended cement, not only could energy efficiency be improved, but carbon dioxide emission could also be minimised during clinker production; and the installation of an advance high-pressure grinding rolls (clinker–roller-press process) to maximise energy efficiency to above what is obtainable from the traditional ball mills and to minimise CO2 emission from the power plant.  相似文献   

10.
The global average temperature has witnessed a steady increase during the second half of the twentieth century and the trend is continuing. Carbon dioxide, a major green house gas is piling up in the atmosphere and besides causing global warming, is expected to alter the physico-chemical composition of plants. The objective of this work was to evaluate the hypothesis that increased CO2 in the air is causing undesirable changes in the nutritional composition of tomato fruits. Two varieties of tomato (Lycopersicon esculentum) were grown in ambient (400 μmol mol?1) and elevated (1,000 μmol mol?1) concentration of CO2 under controlled conditions. The fruits were harvested at premature and fully matured stages and analyzed for yield, proximate composition, elemental concentration, fatty acid, and vitamin C contents. The amount of carbohydrates increased significantly under the enhanced CO2 conditions. The amount of crude protein and vitamin C, two important nutritional parameters, decreased substantially. Fatty acid content showed a mild decrease with a slight increase in crude fiber. Understandably, the effect of enhanced atmospheric CO2 was more pronounced at the fully matured stage. Mineral contents of the fruit samples changed in an irregular fashion. Tomato fruit has been traditionally a source of vitamin C, under the experimental conditions, a negative impact of enhanced CO2 on this source of vitamin C was observed. The nutritional quality of both varieties of tomato has altered under the CO2 enriched atmosphere.  相似文献   

11.
This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July–August of 2010 and 2011, and to reveal the response of local O3 to its precursors’ emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m3 and mean daily maximum of 236.8 μg/m3, which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00–12:00 and usually remained for 5–6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of ?0.16~?0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the ozone formation in Beijing urban area through reducing the VOCs transport from the industrial area to the urban area.  相似文献   

12.
The main objective of this work was to quantify and characterize the major indoor air contaminants present in different stages of a municipal WWTP, including microorganisms (bacteria and fungi), carbon dioxide, carbon monoxide, hydrogen sulfide ammonia, formaldehyde, and volatile organic compounds (VOCs). In general, the total bacteria concentration was found to vary from 60 to >52,560 colony-forming units (CFU)/m3, and the total fungi concentration ranged from 369 to 14,068 CFU/m3. Generally, Gram-positive bacteria were observed in higher number than Gram-negative bacteria. CO2 concentration ranged from 251 to 9,710 ppm, and CO concentration was either not detected or presented a level of 1 ppm. H2S concentration ranged from 0.1 to 6.0 ppm. NH3 concentration was <2 ppm in most samples. Formaldehyde was <0.01 ppm at all sampling sites. The total VOC concentration ranged from 36 to 1,724 μg/m3. Among the VOCs, toluene presented the highest concentration. Results point to indoor/outdoor ratios higher than one. In general, the highest levels of airborne contaminants were detected at the primary treatment (SEDIPAC 3D), secondary sedimentation, and sludge dehydration. At most sampling sites, the concentrations of airborne contaminants were below the occupational exposure limits (OELs) for all the campaigns. However, a few contaminants were above OELs in some sampling sites.  相似文献   

13.
Studies conducted over the past decades have provided substantial evidence that both the long- and the short-term exposures to ozone and particulate matter are responsible for mortality and cardiopulmonary morbidity. This paper examines the relationship between exposure to ambient concentrations of ozone (O3) and particulate matter with aerodynamic diameter of less than 10 μm (PM10) and public health and provides the quantification of the burden of disease from PM10 and O3-related mortality and morbidity through a Life Cycle Impact Assessment focused on the greater area of Athens, Greece. Thus, characterizations factors (CFs) for human health damage are calculated in 17 sites in Athens, in terms of the annual marginal change in the disability-adjusted life years (DALYs) due to a marginal increase in the ambient concentrations. It is found that the PM10 intake factors range between 1.25?×?10?6 and 2.78?×?10?6, suggesting that 1.25–2.78 μg of PM10 are inhaled by the Athenian population per kg of PM10 in the urban atmosphere. Mortality due to chronic exposure to PM10 has a dominant contribution to years of life lost with values ranging between 6.2?×?10?5 and 1.1?×?10?4. On the other hand, the mortality caused by short-term exposure to O3 is weaker with the CFs ranging between 1.58?×?10?7?years of life lost in the urban/traffic areas and 4.71?×?10?7?years in the suburbs. Finally, it is found that 9,000 DALYs are lost on average in Athens, corresponding to 0.0018 DALYs per person. This is equal to 0.135 DALYs per person over a lifetime of approximately 75 years, assuming constant emission rates for the whole period.  相似文献   

14.
Surface data of meteorological parameters (wind speed, wind direction, and mixing height) and air pollutant concentrations (O3, NO, and NO2) were collected for a 92-day period associated with typhoon formation in 2005. The influence of typhoons on O3 concentration were defined by azimuth and distance from Taiwan, and Types A, B, and C correspond to typhoons less than 1,500 km from Taiwan and located between azimuths 45° and 135°, 135° and 225°, and 225° and 45°, respectively. Type D corresponds to typhoons more than 1,500 km from Taiwan. Titration reactions were conducted at three temporal phases: 2000–0700, 0800–1100, and 1200–1400 LST (Local Standard Time). The air pollution model (TAPM) was used to simulate wind fields and trajectories of air masses. It was determined that typhoon position affected O3 concentration, temporal and spatial patterns of O3 titration and vertical meteorological characteristics, which were not all at the statistically significant level.  相似文献   

15.
The analyses presented in this paper include the concentration levels of NO2 and O3 measured during 2 successive years in twin cities (Rawalpindi and Islamabad) of Pakistan from November 2009 to March 2011. NO2 was determined using the passive sampling method, while ozone was determined by Model 400E ozone analyzer. The average NO2 and O3 concentration in twin cities of Pakistan was found to be 44?±?6 and 18.2?±?1.24 ppb, respectively. Results indicate that the concentration of NO2 and O3 show seasonal variations. Results also depict that NO2 and O3 concentration levels are high in areas of intense traffic flow and congestion. Rawalpindi has more elevated levels of NO2 and O3 as compared to the Islamabad due to the narrow roads, enclosing architecture of road network and congestion. Climatic variables also influenced the NO2 and O3 concentration, i.e., temperature is positively related with O3, while negatively related with NO2, relative humidity is directly related with NO2 and inversely related with O3, whereas rainfall show negative association with both NO2 and O3 concentration. Comparing the results with WHO standards reveals that NO2 concentration levels at all the sampling points are above the permissible limit, while ozone concentration is still lower than the WHO standards. Thus, there is a need to take appropriate steps to control these continuously increasing levels of NO2 and O3 before they become a serious hazard for the environment and people living in those areas.  相似文献   

16.
This paper presents monitoring results of daily brick kiln stack emission and the derived emission factors. Emission of individual air pollutant varied significantly during a firing batch (7 days) and between kilns. Average emission factors per 1,000 bricks were 6.35–12.3 kg of CO, 0.52–5.9 kg of SO2 and 0.64–1.4 kg of particulate matter (PM). PM emission size distribution in the stack plume was determined using a modified cascade impactor. Obtained emission factors and PM size distribution data were used in simulation study using the Industrial Source Complex Short-Term (ISCST3) dispersion model. The model performance was successfully evaluated for the local conditions using the simultaneous ambient monitoring data in 2006 and 2007. SO2 was the most critical pollutant, exceeding the hourly National Ambient Air Quality Standards over 63 km2 out of the 100-km2 modelled domain in the base case. Impacts of different emission scenarios on the ambient air quality (SO2, PM, CO, PM dry deposition flux) were assessed.  相似文献   

17.
A comprehensive attempt has been made to evaluate the diurnal and spatial pattern of CO2 exchange between the atmosphere and water along the estuarine track of Indian Sundarbans during the two summer months, April and May, 2011. Rigorous field observations were carried out which included the hourly measurements of total alkalinity, pH, fugacity of CO2 in ambient air and water surface, dissolved oxygen, and chlorophyll a. The estuarine water was found rich in total alkalinity and was oversaturated with CO2 throughout the diurnal cycle in the two stations situated at the inner and middle estuary, respectively, whereas an entirely reverse situation was observed in the outer fringes. The fugacity of CO2 in water ranged from 152 to 657 μatm during the study period. The percentage of over-saturation in inner and middle estuary varied from 103 to 168 and 103 to 176 %, respectively, whereas the degree of under-saturation in the outer estuary lied between 40 and 99 %. Chlorophyll a concentrations were found higher in the outer estuary (12.3?±?2.2 mg?m?3) compared to the middle (6.4?±?0.6 mg?m?3) and inner parts (1.6?±?0.2 mg?m?3), followed by a similar decreasing pattern in nutrient availability from the outer to inner estuary. The sampling stations situated at the inner and middle estuary acted as a net source of 29.69 and 23.62 mg?CO2?m?2 day?1, respectively, whereas the outer station behaved as a net sink of ?33.37 mg?CO2 m?2 day?1. The study of primary production and community respiration further supports the heterotrophic nature of the estuary in the inner region while the outer periphery was marked by dominant autotrophic character. These contrasting results are in parity with the source characters of many inner estuaries and sinking characters of the outer estuaries situated at the distal continental shelf areas.  相似文献   

18.
We assessed the effects of seasonal dynamics on the physico-chemical qualities and heavy metals concentrations of the Umgeni and Umdloti Rivers in Durban, South Africa. Water samples were taken from nine different sampling points and analysed for the following parameters; temperature, pH, turbidity, electrical conductivity (EC), biological oxygen demand (BOD5), chemical oxygen demand (COD), phosphate (PO4 2?), nitrate (NO3 2?), ammonium (NH4 +), sulphate (SO4 2?), lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), aluminium (Al3+), and copper (Cu2+) using standard methods. The data showed variations it terms of the seasonal fluctuations and sampling regime as follows: temperature 12–26.5 °C; pH 5.96–8.45; turbidity 0.53–18.8 NTU; EC 15.8–5180 mS m?1; BOD5 0.60–7.32 mg L?1; COD 10.5–72.9 mg L?1; PO4 2??<?500–2,460 μg L?1; NO3 2? <0.05–4.21 mg L?1; NH4 +?<?0.5–1.22 mg L?1; SO4 2? 3.90–2,762 mg L?1; Pb2+ 0.023–0.135 mg L?1; Hg2+ 0.0122–0.1231 mg L?1 Cd2+ 0.068–0.416 mg L?1; Al3+ 0.037–1.875 mg L?1, and Cu2+0.006–0.144 mg L?1. The concentrations of most of the investigated parameters exceeded the recommended limit of the South African Guidelines and World Health Organization tolerance limits for freshwater quality. We conclude that these water bodies are potentially hazardous to public health and this highlights the need for implementation of improved management strategies of these river catchments for continued sustainability.  相似文献   

19.
Atmospheric pollutant monitoring constitutes a primordial activity in public policies concerning air quality. In São Paulo State, Brazil, the São Paulo State Environment Company (CETESB) maintains an automatic network which continuously monitors CO, SO2, NO x , O3, and particulate matter concentrations in the air. The monitoring process accuracy is a fundamental condition for the actions to be taken by CETESB. As one of the support systems, a preventive maintenance program for the different analyzers used is part of the data quality strategy. Knowledge of the behavior of analyzer failure times could help optimize the program. To achieve this goal, the failure times of an ozone analyzer—considered a repairable system—were modeled by means of the nonhomogeneous Poisson process. The rate of occurrence of failures (ROCOF) was estimated for the intervals 0–70,800 h and 0–88,320 h, in which six and seven failures were observed, respectively. The results showed that the ROCOF estimate is influenced by the choice of the observation period, t 0?=?70,800 h and t 7?=?88,320 h in the cases analyzed. Identification of preventive maintenance actions, mainly when parts replacement occurs in the last interval of observation, is highlighted, justifying the alteration in the behavior of the inter-arrival times. The performance of a follow-up on each analyzer is recommended in order to record the impact of the performed preventive maintenance program on the enhancement of its useful life.  相似文献   

20.
南京市臭氧、VOCs和PANs污染特征及变化趋势   总被引:1,自引:0,他引:1  
对2013—2016年基于国家环境空气质量监测站以及省建大气多参数站所获取的南京市O_3、NO_2、CO、VOCs、PANs观测结果进行综合评价,结果表明:2016年南京市O_3第90百分位日最大8 h平均质量浓度比2013年上升33.3%,超标天数中O_3引起的超标占比增至32.0%。南京市区大气中非甲烷总烃冬季浓度高于夏季,含氧挥发性有机物则与之相反;在5—9月,含氧挥发性有机物组分在日变化过程中出现峰值的时间先后顺序依次为醚、醛、酮类,且O_3和过氧乙酰硝酸酯(PANs)生成存在有一定的线性关系。VOCs/NOx比值表明南京市处于VOCs控制区,因此对NO_2浓度下降不敏感,植物源挥发性有机物连续3年上升,夏季大气光化学反应活性未显著下降,这些现象是城市O_3浓度维持在较高水平的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号