首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: The giant panda (Ailuropoda melanoleuca), is one of the world's most endangered species. Habitat loss and fragmentation have reduced its numbers, shrunk its distribution, and separated the population into isolated subpopulations. Such isolated, small populations are in danger of extinction due to random demographic factors and inbreeding. We used least‐cost modeling as a systematic approach to incorporate satellite imagery and data on ecological and behavioral parameters of the giant panda collected during more than 10 years of field research to design a conservation landscape for giant pandas in the Minshan Mountains. We identified 8 core habitats and 4 potential linkages that would link core habitats CH3, CH4, and CH5 with core habitats CH6, CH7, and CH8. Establishing and integrating the identified habitats with existing reserves would create an efficient reserve network for giant panda conservation. The core habitats had an average density of 4.9 pandas/100 km2 and contained approximately 76.6% of the giant panda population. About 45% of the core habitat (3245.4 km2) existed outside the current nature reserves network. Total estimated core habitat decreased between 30.4 and 44.5% with the addition of residential areas and road networks factored into the model. A conservation area for giant panda in the Minshan Mountains should aim to ensure habitat retention and connectivity, improve dispersal potential of corridors, and maintain the evolutionary potential of giant pandas in the face of future environmental changes.  相似文献   

2.
Abstract: Because habitat loss due to urbanization is a primary threat to biodiversity, and land‐use decisions in urbanizing areas are mainly made at the local level, land‐use planning by municipal planning departments has a potentially important—but largely unrealized—role in conserving biodiversity. To understand planners’ perspectives on the factors that facilitate and impede biodiversity conservation in local planning, we interviewed directors of 17 municipal planning departments in the greater Seattle (Washington, U.S.A.) area and compared responses of planners from similar‐sized jurisdictions that were “high” and “low performing” with respect to incorporation of biodiversity conservation in local planning. Planners from low‐performing jurisdictions regarded mandates from higher governmental levels as the primary drivers of biodiversity conservation, whereas those from high‐performing jurisdictions regarded community values as the main drivers, although they also indicated that mandates were important. Biodiversity conservation was associated with presence of local conservation flagship elements (e.g., salmonids) and human‐centered benefits of biodiversity conservation (e.g., quality of life). Planners from high‐ and low‐performing jurisdictions favored different planning mechanisms for biodiversity conservation, perhaps reflecting differences in funding and staffing. High performers reported more collaborations with other entities on biodiversity issues. Planners’ comments indicated that the term biodiversity may be problematic in the context of local planning. The action most planners recommended to increase biodiversity conservation in local planning was public education. These results suggest that to advance biodiversity conservation in local land‐use planning, conservation biologists should investigate and educate the public about local conservation flagships and human benefits of local biodiversity, work to raise ecological literacy and explain biodiversity more effectively to the public, and promote collaboration on biodiversity conservation among jurisdictions and inclusion of biodiversity specialists in planning departments.  相似文献   

3.
In November 1928, Theodore Jr. and Kermit Roosevelt led an expedition to China with the expressed purpose of being the first Westerners to kill the giant panda (Ailuropoda melanoleuca). The expedition lasted 8 months and resulted in the brothers shooting a giant panda in the mountains of Sichuan Province. Given the concurrent attention in the popular press describing this celebrated expedition, the giant panda was poised to be trophy hunted much like other large mammals around the world. Today, however, the killing of giant pandas, even for the generation of conservation revenue, is unthinkable for reasons related to the species itself and the context, in time and space, in which the species was popularized in the West. We found that the giant panda's status as a conservation symbol, exceptional charisma and gentle disposition, rarity, value as a nonconsumptive ecotourism attraction, and endemism are integral to the explanation of why the species is not trophy hunted. We compared these intrinsic and extrinsic characteristics with 20 of the most common trophy-hunted mammals to determine whether the principles applying to giant pandas are generalizable to other species. Although certain characteristics of the 20 trophy-hunted mammals aligned with the giant panda, many did not. Charisma, economic value, and endemism, in particular, were comparatively unique to the giant panda. Our analysis suggests that, at present, exceptional characteristics may be necessary for certain mammals to be excepted from trophy hunting. However, because discourse relating to the role of trophy hunting in supporting conservation outcomes is dynamic in both science and society, we suspect these valuations will also change in future.  相似文献   

4.
The outcomes of species recovery programs have been mixed; high‐profile population recoveries contrast with species‐level extinctions. Each conservation intervention has its own challenges, but to inform more effective management it is imperative to assess whether correlates of wider recovery program success or failure can be identified. To contribute to evidence‐based improvement of future conservation strategies, we conducted a global quantitative analysis of 48 mammalian recovery programs. We reviewed available scientific literature and conducted semistructured interviews with conservation professionals involved in different recovery programs to investigate ecological, management, and political factors associated with population recoveries or declines. Identifying and removing threats was significantly associated with increasing population trend and decreasing conservation dependence, emphasizing that populations are likely to continue to be compromised in the absence of effective threat mitigation and supporting the need for threat monitoring and adaptive management in response to new and potential threats. Lack of habitat and small population size were cited as limiting factors in 56% and 42% of recovery programs, respectively, and both were statistically associated with increased longer term dependence on conservation intervention, demonstrating the importance of increasing population numbers quickly and restoring and protecting habitat. Poor stakeholder coordination and management were also regularly cited by respondents as key weaknesses in recovery programs, indicating the importance of effective leadership and shared goals and management plans. Project outcomes were not influenced by biological or ecological variables such as body mass or habitat, which suggests that these insights into correlates of conservation success and failure are likely to be generalizable across mammals.  相似文献   

5.
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy‐based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy‐based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per‐visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species. Poder de Análisis Espacialmente Explícito para el Monitoreo Basado en Ocupación del Glotón (Gulo gulo) en las Montañas Rocallosas de Estados Unidos  相似文献   

6.
Poaching has devastated forest elephant populations (Loxodonta cyclotis), and their habitat is dramatically changing. The long‐term effects of poaching and other anthropogenic threats have been well studied in savannah elephants (Loxodonta africana), but the impacts of these changes for Central Africa's forest elephants have not been discussed. We examined potential repercussions of these threats and the related consequences for forest elephants in Central Africa by summarizing the lessons learned from savannah elephants and small forest elephant populations in West Africa. Forest elephant social organization is less known than the social organization of savannah elephants, but the close evolutionary history of these species suggests that they will respond to anthropogenic threats in broadly similar ways. The loss of older, experienced individuals in an elephant population disrupts ecological, social, and population parameters. Severe reduction of elephant abundance within Central Africa's forests can alter plant communities and ecosystem functions. Poaching, habitat alterations, and human population increase are probably compressing forest elephants into protected areas and increasing human–elephant conflict, which negatively affects their conservation. We encourage conservationists to look beyond documenting forest elephant population decline and address the causes of these declines when developing conversation strategies. We suggest assessing the effectiveness of the existing protected‐area networks for landscape connectivity in light of current industrial and infrastructure development. Longitudinal assessments of the effects of landscape changes on forest elephant sociality and behavior are also needed. Finally, lessons learned from West African elephant population loss and habitat fragmentation should be used to inform strategies for land‐use planning and managing human–elephant interactions.  相似文献   

7.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   

8.
9.
采用固定样方法和定位观察法连续测定了2003~2007年间卧龙自然保护区大熊猫野化培训圈内及其附近区域的拐棍竹无性系种群数量和生长发育特性等参数,运用收获法与非破坏性重量估测法建立了不同龄级和残桩的竹子种群和分株生物量估测模型,进而利用最佳模型计算并评估了野化培训大熊猫采食和人为砍伐对拐棍竹无性系种群生物量和植株个体生物量的影响.结果表明:在环境条件、种群密度、生长发育特征和种群生物量等基本相似的基础上,大熊猫采食和人为砍伐不仅降低实验期间的竹子生物生产力,而且影响到后期阶段实验种群的恢复与发展.大熊猫采食样方中的竹子种群生物量虽然较对照样方低,就竹笋生物量而言,约为对照的57.79%,这与野化培训圈的面积较小、竹种单一而使采食比重(67.07%)较大有关,但其各龄级植株个体生物量均能达到大熊猫的取食利用标准(仅2004年生竹除外),具有持续供给大熊猫食物资源的潜力;而人为砍伐措施与大熊猫采食相比,影响效果极为强烈,它严重降低了拐棍竹无性系的种群生物量,尤其是竹笋重量更是如此,仅为对照样方的14.69%,且植株个体鲜重远低于大熊猫的觅食条件.因此,竹笋和无性系植株的生物量是大熊猫采食标准的主要因素.  相似文献   

10.
Conservation actions, such as habitat protection, attempt to halt the loss of threatened species and help their populations recover. The efficiency and the effectiveness of actions have been examined individually. However, conservation actions generally occur simultaneously, so the full suite of implemented conservation actions should be assessed. We used the conservation actions underway for all threatened and near‐threatened birds of the world (International Union for Conservation of Nature Red List of Threatened Species) to assess which biological (related to taxonomy and ecology) and anthropogenic (related to geoeconomics) factors were associated with the implementation of different classes of conservation actions. We also assessed which conservation actions were associated with population increases in the species targeted. Extinction‐risk category was the strongest single predictor of the type of conservation actions implemented, followed by landmass type (continent, oceanic island, etc.) and generation length. Species targeted by invasive nonnative species control or eradication programs, ex situ conservation, international legislation, reintroduction, or education, and awareness‐raising activities were more likely to have increasing populations. These results illustrate the importance of developing a predictive science of conservation actions and the relative benefits of each class of implemented conservation action for threatened and near‐threatened birds worldwide.  相似文献   

11.
Abstract: Much of the biodiversity associated with isolated wetlands requires aquatic and terrestrial habitat to maintain viable populations. Current federal wetland regulations in the United States do not protect isolated wetlands or extend protection to surrounding terrestrial habitat. Consequently, some land managers, city planners, and policy makers at the state and local levels are making an effort to protect these wetland and neighboring upland habitats. Balancing human land‐use and habitat conservation is challenging, and well‐informed land‐use policy is hindered by a lack of knowledge of the specific risks of varying amounts of habitat loss. Using projections of wood frog (Rana sylvatica) and spotted salamander (Ambystoma maculatum) populations, we related the amount of high‐quality terrestrial habitat surrounding isolated wetlands to the decline and risk of extinction of local amphibian populations. These simulations showed that current state‐level wetland regulations protecting 30 m or less of surrounding terrestrial habitat are inadequate to support viable populations of pool‐breeding amphibians. We also found that species with different life‐history strategies responded differently to the loss and degradation of terrestrial habitat. The wood frog, with a short life span and high fecundity, was most sensitive to habitat loss and isolation, whereas the longer‐lived spotted salamander with lower fecundity was most sensitive to habitat degradation that lowered adult survival rates. Our model results demonstrate that a high probability of local amphibian population persistence requires sufficient terrestrial habitat, the maintenance of habitat quality, and connectivity among local populations. Our results emphasize the essential role of adequate terrestrial habitat to the maintenance of wetland biodiversity and ecosystem function and offer a means of quantifying the risks associated with terrestrial habitat loss and degradation.  相似文献   

12.
Roads,Interrupted Dispersal,and Genetic Diversity in Timber Rattlesnakes   总被引:1,自引:0,他引:1  
Abstract: Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine‐scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic‐assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.  相似文献   

13.
A recent discussion debates the extent of human in‐migration around protected areas (PAs) in the tropics. One proposed argument is that rural migrants move to bordering areas to access conservation outreach benefits. A counter proposal maintains that PAs have largely negative effects on local populations and that outreach initiatives even if successful present insufficient benefits to drive in‐migration. Using data from Tanzania, we examined merits of statistical tests and spatial methods used previously to evaluate migration near PAs and applied hierarchical modeling with appropriate controls for demographic and geographic factors to advance the debate. Areas bordering national parks in Tanzania did not have elevated rates of in‐migration. Low baseline population density and high vegetation productivity with low interannual variation rather than conservation outreach explained observed migration patterns. More generally we argue that to produce results of conservation policy significance, analyses must be conducted at appropriate scales, and we caution against use of demographic data without appropriate controls when drawing conclusions about migration dynamics. La Migración Humana, Áreas Protegidas y el Alcance de la Conservación en Tanzania  相似文献   

14.
Abstract: The current shortfall in effectiveness within conservation biology is illustrated by increasing interest in “evidence‐based conservation,” whose proponents have identified the need to benchmark conservation initiatives against actions that lead to proven positive effects. The effectiveness of conservation policies, approaches, and evaluation is under increasing scrutiny, and in these areas models of excellence used in business could prove valuable. Typically, conservation programs require years of effort and involve rigorous long‐term implementation processes. Successful balance of long‐term efforts alongside the achievement of short‐term goals is often compromised by management or budgetary constraints, a situation also common in commercial businesses. “Business excellence” is an approach many companies have used over the past 20 years to ensure continued success. Various business excellence evaluations have been promoted that include concepts that could be adapted and applied in conservation programs. We describe a conservation excellence model that shows how scientific processes and results can be aligned with financial and organizational measures of success. We applied the model to two well‐documented species conservation programs. In the first, the Po’ouli program, several aspects of improvement were identified, such as more authority for decision making in the field and better integration of habitat management and population recovery processes. The second example, the black‐footed ferret program, could have benefited from leadership effort to reduce bureaucracy and to encourage use of best‐practice species recovery approaches. The conservation excellence model enables greater clarity in goal setting, more‐effective identification of job roles within programs, better links between technical approaches and measures of biological success, and more‐effective use of resources. The model could improve evaluation of a conservation program's effectiveness and may be used to compare different programs, for example during reviews of project performance by sponsoring organizations.  相似文献   

15.
Abstract: Maintenance of viable populations of many endangered species will require conservation action in perpetuity. Efforts to conserve these species are more likely to be successful if their reliance on conservation actions is assessed at the population level. Woodland caribou (Rangifer tarandus caribou) were extirpated recently from Banff National Park, Canada, and translocations of caribou to Banff and neighboring Jasper National Park are being considered. We used population viability analysis to assess the relative need for and benefits from translocation of individuals among caribou populations. We measured stochastic growth rates and the probability of quasi extinction of four populations of woodland caribou with and without translocation. We used two vital rates in our analysis: mean adult female survival and mean number of calves per breeding‐age female as estimates of mean fecundity. We isolated process variance for each vital rate. Our results suggested the Tonquin caribou population in Jasper is likely to remain viable without translocation, but that translocation is probably insufficient to prevent eventual extirpation of the two other populations in Jasper. Simulated reintroductions of caribou into Banff resulted in a 53–98% probability of >8 females remaining after 20 years, which suggests translocation may be an effective recovery tool for some caribou populations.  相似文献   

16.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

17.
Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration—requiring prompt action rather than awaiting better information. We developed an expert‐opinion threat‐based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species‐specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species’ extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data‐limited species likely to be affected by global‐scale threats. Incorporación del Cambio Climático y Oceánico en Estudios de Riesgo de Extinción para 82 Especies de Coral  相似文献   

18.
Systematic conservation planning optimizes trade‐offs between biodiversity conservation and human activities by accounting for socioeconomic costs while aiming to achieve prescribed conservation objectives. However, the most cost‐efficient conservation plan can be very dissimilar to any other plan achieving the set of conservation objectives. This is problematic under conditions of implementation uncertainty (e.g., if all or part of the plan becomes unattainable). We determined through simulations of parallel implementation of conservation plans and habitat loss the conditions under which optimal plans have limited chances of implementation and where implementation attempts would fail to meet objectives. We then devised a new, flexible method for identifying conservation priorities and scheduling conservation actions. This method entails generating a number of alternative plans, calculating the similarity in site composition among all plans, and selecting the plan with the highest density of neighboring plans in similarity space. We compared our method with the classic method that maximizes cost efficiency with synthetic and real data sets. When implementation was uncertain—a common reality—our method provided higher likelihood of achieving conservation targets. We found that χ, a measure of the shortfall in objectives achieved by a conservation plan if the plan could not be implemented entirely, was the main factor determining the relative performance of a flexibility enhanced approach to conservation prioritization. Our findings should help planning authorities prioritize conservation efforts in the face of uncertainty about future condition and availability of sites.  相似文献   

19.
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long‐lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire‐prone ecosystems, including the biodiversity hotspots of Mediterranean‐type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long‐lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land‐use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land‐use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. Manejo de Incendios, Reubicación Administrada y Opciones de Conservación de Suelo para Plantas de Vida Larga con Sembrado Obligado bajo los Cambios Globales en el Clima, la Urbanización y el Régimen de Incendios  相似文献   

20.
Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much‐needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long‐term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long‐term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real‐world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real‐world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land‐use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. Inferencia la Naturaleza de las Amenazas Antropogénicas para los Registros de Abundancia a Largo Plazo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号