首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To augment mammal conservation in the Eastern Himalayan region, we assessed the resident 255 terrestrial mammal species and identified the 50 most threatened species based on conservation status, endemism, range size, and evolutionary distinctiveness. By using the spatial analysis package letsR and the complementarity core‐area method in the conservation planning software Zonation, we assessed the current efficacy of their protection and identified priority conservation areas by comparing protected areas (PAs), land cover, and global ecoregion 2017 maps at a 100 × 100 m spatial scale. The 50 species that were most threatened, geographically restricted, and evolutionarily distinct faced a greater extinction risk than globally nonthreatened and wide‐ranging species and species with several close relatives. Small, medium‐sized, and data‐deficient species faced extinction from inadequate protection in PAs relative to wide‐ranging charismatic species. There was a mismatch between current PA distribution and priority areas for conservation of the 50 most endangered species. To protect these species, the skewed regional PA distribution would require expansion. Where possible, new PAs and transboundary reserves in the 35 priority areas we identified should be established. There are adequate remaining natural areas in which to expand current Eastern Himalayan PAs. Consolidation and expansion of PAs in the EH requires strengthening national and regional transboundary collaboration, formulating comprehensive regional land‐use plans, diversifying conservation funding, and enhancing information sharing through a consolidated regional database.  相似文献   

2.
Abstract: Phylogenetic diversity measures rank areas for biodiversity conservation priorities based on information encoded in phylogenies (cladograms). The goal of these ranks for conservation is to consider as many factors as possible that provide additional taxic information, such as taxa richness, taxa distributional patterns, area endemicity, and complementarity between areas. At present there are many measures that consider phylogenetic information, including node-based, genetic-distance, and feature-based measures. We devised a modified phylogenetic node-based index that we call "taxonomic endemicity standardized weight," which considers not only the taxonomic distinctness of the taxa that inhabit a given area but their endemicity as well. Once the standardized weight of the taxonomic endemicity identifies the area of highest priority, complementarity can be used to identify the second area and so on. We used this node-based index to rank priority areas for conservation in southern South America, and we compared the results of our rankings to results based on other node-based indexes. Our index identified Santiago district, in Central Chile province, as the highest priority area for conservation, followed by Maule, Malvinas, and districts of Subantarctic province. Malvinas exhibits greater complementarity relative to Santiago than Maule does, however, so Malvinas is ranked second in priority. Indexes based on phylogenetic information measure the evolutionary component of biodiversity and allow one to identify areas that will ensure the preservation of evolutionary potential and phylogenetically rare taxa. The modified index we propose is sensitive to taxic distinctness and endemicity as well and allows information from diverse taxa to be combined (i.e., different cladograms). The use of complementarity allows for preservation of the maximum quantity of taxa in a minimal number of protected areas.  相似文献   

3.
Cover Caption     
Cover: Tree pincushion (Leucospermum conocarpodendron viridum), a member of the family Proteaceae and the largest member of its genus, Cape of Good Hope National Park, South Africa. On pages 593‐601, Tucker et al. explore differences in the species richness, phylogenetic diversity, and evolutionary distinctiveness of Proteaceae species in the Cape Floristic Region of South Africa. They found that species richness and phylogenetic diversity typically were highly correlated, but sites with high phylogenetic diversity were more spatially extensive than sites with high species richness. Rare species generally had high levels of evolutionary distinctiveness. Sites near the southern edge of the Cape Floristic Region were occupied by species with high levels of evolutionary distinctiveness and limited geographic ranges, but those sites were not assigned high conservation‐priority rankings on the basis of species richness or phylogenetic distinctiveness. Photographer: Photographer and conservationist Jaime Rojo ( http://www.jaime‐rojo.com ) believes visual storytelling is a powerful tool for conservation. Since moving to Mexico from his native Spain 8 years ago, Jaime has worked with diverse environmental nongovernmental organizations while developing his career as a photographer. He has participated in numerous conservation initiatives including the promotion of El Carmen Big Bend Conservation Corridor, a transboundary protected area along the border between Mexico and the United States; a campaign to protect the San Pedro Mezquital, the last free‐flowing river in the western Sierra Madre; and the celebration of WILD9, the ninth World Wilderness Congress, for which he was executive director in Mexico. Rojo is a trustee of Th e WILD Foundation and an associate of the International League of Conservation Photographers.  相似文献   

4.
Abstract:  Plant-diversity hotspots on a global scale are well established, but smaller local hotspots within these must be identified for effective conservation of plants at the global and local scales. We used the distributions of endemic and endemic-threatened species of Myrtaceae to indicate areas of plant diversity and conservation importance within the Atlantic coastal forests ( Mata Atlântica ) of Brazil. We applied 3 simple, inexpensive geographic information system (GIS) techniques to a herbarium specimen database: predictive species-distribution modeling (Maxent); complementarity analysis (DIVA-GIS); and mapping of herbarium specimen collection locations. We also considered collecting intensity, which is an inherent limitation of use of natural history records for biodiversity studies. Two separate areas of endemism were evident: the Serra do Mar mountain range from Paraná to Rio de Janeiro and the coastal forests of northern Espírito Santo and southern Bahia. We identified 12 areas of approximately 35 km2 each as priority areas for conservation. These areas had the highest species richness and were highly threatened by urban and agricultural expansion. Observed species occurrences, species occurrences predicted from the model, and results of our complementarity analysis were congruent in identifying those areas with the most endemic species. These areas were then prioritized for conservation importance by comparing ecological data for each.  相似文献   

5.
Biodiversity conservation requires efficient methods for choosing priority areas for in situ conservation management. We compared three quantitative methods for choosing 5% (an arbitrary figure) of all the 10 × 10 km grid cells in Britain to represent the diversity of breeding birds: (1) hotspots of richness, which selects the areas richest in species; (2) hotspots of range-size rarity (narrow endemism), which selects areas richest in those species with the most restricted ranges; and (3) sets of complementary areas, which selects areas with the greatest combined species richness. Our results show that richness hotspots contained the highest number of species-in-grid-cell records (with many representations of the more widespread species), whereas the method of complementary areas obtained the lowest number. However, whereas richness hotspots included representation of 89% of British species of breeding birds, and rarity hotspots included 98%, the areas chosen using complementarity represented all the species, where possible, at least six times over. The method of complementary areas was also well suited to supplementing the existing conservation network. For example, starting with grid cells with over 50% area cover by existing "Sites of Special Scientific Interest," we searched for a set of areas that could complete the representation of all the most threatened birds in Britain, the Red Data species. The method of complementary areas distinguishes between irreplaceable and flexible areas, which helps planners by providing alternatives for negotiation. This method can also show which particular species justify the choice of each area. Yet the complementary areas method will not be fully able to select the best areas for conservation management until we achieve integration of some of the more important factors affecting viability, threat, and cost.  相似文献   

6.
Ascidian fauna have been intensively studied in the Atlantic Ocean, adjacent subpolar regions and Mediterranean Sea for the last 20 years. Here, we have described current species distribution patterns and identified nested areas of endemism using parsimony analysis of endemicity (PAE). We also identified diversity hotspots, areas in which species occurred exclusively, and gaps in information about distribution patterns. Finally, we compared ascidian distributions among various proposed biogeographic divisions. The comprehensive literature review provided data on the geographic distribution of 627 species of ascidians. In the West Atlantic, there were three peaks in richness: north Caribbean—96 species, São Paulo and Rio de Janeiro—61 species and the subantarctic region—54 species. In the eastern Atlantic, the greatest richness occurred on Spanish and French coasts—91 species and in Senegal—83 species. In the Mediterranean, the greatest richness was in Spain and France—142 species and Italy—127 species. PAE designated 20 areas of endemism nested within eight larger regions that were more or less in agreement with realms or provinces of previous studies: North Atlantic, Caribbean, southeastern Brazil, Magellanic, Subantarctic, Tropical West Africa, South Africa, and Mediterranean. Distribution patterns of the Ascidiacea, in general, followed previously proposed divisions of regions and provinces in the Atlantic and adjacent polar regions, but not subdivisions of these regions.  相似文献   

7.
Key goals of conservation are to protect both species and the functional and genetic diversity they represent. A strictly species-based approach may underrepresent rare, threatened, or genetically distinct species and overrepresent widespread species. Although reserves are created for a number of reasons, including economic, cultural, and ecological reasons, their efficacy has been measured primarily in terms of how well species richness is protected, and it is useful to compare how well they protect other measures of diversity. We used Proteaceae species-occurrence data in the Cape Floristic Region of South Africa to illustrate differences in the spatial distribution of species and evolutionary diversity estimated from a new maximum-likelihood molecular phylogeny. We calculated species richness, phylogenetic diversity (i.e., summed phylogenetic branch lengths in a site), and a site-aggregated measure of biogeographically weighted evolutionary distinctiveness (i.e., an abundance weighted measure that captures the unique proportion of the phylogenetic tree a species represents) for sites throughout the Cape Floristic Region. Species richness and phylogenetic diversity values were highly correlated for sites in the region, but species richness was concentrated at a few sites that underrepresented the much more spatially extensive distribution of phylogenetic diversity. Biogeographically weighted evolutionary diversity produced a scheme of prioritization distinct from the other 2 metrics and highlighted southern sites as conservation priorities. In these sites, the high values of biogeographically weighted evolutionary distinctiveness were the result of a nonrandom relation between evolutionary distinctiveness and geographical rarity, where rare species also tended to have high levels of evolutionary distinctiveness. Such distinct and rare species are of particular concern, but are not captured by conservation schemes that focus on species richness or phylogenetic diversity alone.  相似文献   

8.
Species Richness, Endemism, and the Choice of Areas for Conservation   总被引:18,自引:0,他引:18  
Although large reserve networks will be integral components in successful biodiversity conservation, implementation of such systems is hindered by the confusion over the relative importance of endemism and species richness. There is evidence (  Prendergast et al. 1993) that regions with high richness for a taxon tend to be different from those with high endemism. I tested this finding using distribution and richness data for 368 species from Mammalia, Lasioglossum, Plusiinae, and Papilionidae. The study area, subdivided into 336 quadrats, was the continuous area of North America north of Mexico. I also tested the hypothesis that the study taxa exhibit similar diversity patterns in North America. I found that endemism and richness patterns within taxa were generally similar. Therefore, the controversy over the relative importance of endemism and species richness may not be necessary if an individual taxon were the target of conservation efforts. I also found, however, that richness and endemism patterns were not generally similar between taxa. Therefore, centering nature reserves around areas that are important for mammal diversity (the umbrella species concept) may lead to large gaps in the overall protection of biodiversity because the diversity and endemism of other taxa tend to be concentrated elsewhere. I investigated this further by selecting four regions in North America that might form the basis of a hypothetical reserve system for Carnivora. I analyzed the distribution of the invertebrate taxa relative to these regions and found that this preliminary carnivore reserve system did not provide significantly different protection for these invertebrates than randomly selected quadrats. I conclude that the use of Carnivora as an umbrella taxon is an unreliable method for invertebrate conservation.  相似文献   

9.
Traditional means of assessing representativeness of conservation value in protected areas depend on measures of structural biodiversity. The effectiveness of priority conservation areas at representing critical natural capital (CNC) (i.e., an essential and renewable subset of natural capital) remains largely unknown. We analyzed the representativeness of CNC‐conservation priority areas in national nature reserves (i.e., nature reserves under jurisdiction of the central government with large spatial distribution across the provinces) in China with a new biophysical‐based composite indicator approach. With this approach, we integrated the net primary production of vegetation, topography, soil, and climate variables to map and rank terrestrial ecosystems capacities to generate CNC. National nature reserves accounted for 6.7% of CNC‐conservation priority areas across China. Considerable gaps (35.2%) existed between overall (or potential) CNC representativeness nationally and CNC representation in national reserves, and there was significant spatial heterogeneity of representativeness in CNC‐conservation priority areas at the regional and provincial levels. For example, the best and worst representations were, respectively, 13.0% and 1.6% regionally and 28.9% and 0.0% provincially. Policy in China is transitioning toward the goal of an ecologically sustainable civilization. We identified CNC‐conservation priority areas and conservation gaps and thus contribute to the policy goals of optimization of the national nature reserve network and the demarcation of areas critical to improving the representativeness and conservation of highly functioning areas of natural capital. Moreover, our method for assessing representation of CNC can be easily adapted to other large‐scale networks of conservation areas because few data are needed, and our model is relatively simple.  相似文献   

10.
Conservation planning is important to protect species from going extinct now that natural habitats are decreasing owing to human activity and climate change. However, there is considerable controversy in choosing appropriate metrics to weigh the value of species and geographic regions. For example, the added value of phylogenetic conservation‐selection criteria remains disputed because high correlations between them and the nonphylogenetic criteria of species richness have been reported. We evaluated the commonly used conservation metrics species richness, endemism, phylogenetic diversity (PD), and phylogenetic endemism (PE) in a case study on lemurs of Madagascar. This enabled us to identify the conservation target of each metric and consider how they may be used in future conservation planning. We also devised a novel metric that uses a phylogeny scaled according to the rate of phenotypic evolution as a proxy for a species’ ability to adapt to change. High rates of evolution may indicate generalization or specialization. Both specialization and low rates of evolution may result in an inability to adapt to changing environments. We examined conservation priorities by using the inverse of the rate of body mass evolution to account for species with low rates of evolution. In line with previous work, we found high correlations among species richness and PD (r = 0.96), and endemism and PE (r = 0.82) in Malagasy lemurs. Phylogenetic endemism in combination with rates of evolution and their inverse prioritized grid cells containing highly endemic and specialized lemurs at risk of extinction, such as Avahi occidentalis and Lepilemur edwardsi, 2 endangered lemurs with high rates of phenotypic evolution and low‐quality diets, and Hapalemur aureus, a critically endangered species with a low rate of body mass evolution and a diet consisting of very high doses of cyanide.  相似文献   

11.
Abstract:  Central America is exceptionally rich in biodiversity, but varies widely in the attention its countries devote to conservation. Protected areas, widely considered the cornerstone of conservation, were not always created with the intent of conserving that biodiversity. We assessed how well the protected-area system of Central America includes the region's mammal diversity. This first required a refinement of existing range maps to reduce their extensive errors of commission (i.e., predicted presences in places where species do not occur). For this refinement, we used the ecological limits of each species to identify and remove unsuitable areas from the range. We then compared these maps with the locations of protected areas to measure the habitat protected for each of the region's 250 endemic mammals. The species most vulnerable to extinction—those with small ranges—were largely outside protected areas. Nevertheless, the most strictly protected areas tended toward areas with many small-ranged species. To improve the protection coverage of mammal diversity in the region, we identified a set of priority sites that would best complement the existing protected areas. Protecting these new sites would require a relatively small increase in the total area protected, but could greatly enhance mammal conservation.  相似文献   

12.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   

13.
Abstract:  Researchers predict that new infrastructure development will sharply increase the rate and extent of deforestation in the Brazilian Amazon. There are no predictions, however, of which species it will affect. We used a spatially explicit model that predicts the location of deforestation in the Brazilian Amazon by 2020 on the basis of historical patterns of deforestation following infrastructure development. We overlaid the predicted deforested areas onto maps of bird ranges to estimate the amount of habitat loss within species ranges. We also estimated the amount of habitat loss within modified ecoregions, which were used as surrogates for areas of bird endemism. We then used the extent of occurrence criterion of the World Conservation Union to predict the future conservation status of birds in the Brazilian Amazon. At current rates of development, our results show that at least 16 species will qualify as threatened or will lose more than half of their forested habitat. We also identified several subspecies and isolated populations that would also qualify as threatened. Most of the taxa we identified are not currently listed as threatened, and the majority are associated with riverine habitats, which have been largely ignored in bird conservation in Amazonia. These habitats and the species they hold will be increasingly relevant to conservation as river courses are altered and hydroelectric dams are constructed in the Brazilian Amazon.  相似文献   

14.
Abstract: The level of endemism at a site may indicate species richness of the site. Nevertheless, assessing endemism levels in taxonomic groups such as plants may be difficult because the species richness of plants is high relative to species richness of other taxonomic groups (e.g., vertebrates). A major problem in determining whether plant species are endemic is the lack of standardization of the geographic extent of endemism: species are considered endemic to, for example, countries, continents, or states. We compiled a history of the concept of endemism as it applies to plants. The application of the concept to geographic distribution dates from the 19th century, when European explorers discovered many taxa exclusive to regions outside Europe. Two types of endemism, paleoendemism and neoendemism, were then acknowledged, according to evolutionary age, and these categories are still in use. In the 20th century, most of the research on endemism focused on explaining range restriction on the basis of cytological data, edaphic and geological factors, and phylogeny. This research led to a vast number of concepts, of which only edaphic endemism remains relatively well accepted. More recently, researchers suggest that competition may determine endemism in some cases. We suggest that plants be labeled as endemic only if their distribution occurs in a distinct ecological unit, such as a biome. On the basis of a literature review of the factors that cause range restriction, we categorized endemic taxa as paleoendemic, neoendemic, edaphically endemic, or suppressed endemic. For example, Schlechtendalia luzulifolia, is a rare forb that is a paleoendemic species of the granite and sandstone‐based grasslands of the Pampa. Levels of endemism in southern Brazilian grasslands are poorly known. We emphasize the importance of recognizing these grasslands as a single transnational biome so that levels of endemism of species therein can be assessed correctly.  相似文献   

15.
Abstract: We used spatial and statistical analyses to identify and prioritize broad areas for conservation attention in the northern Zululand region of KwaZulu-Natal, South Africa. We attempted to identify conservation-worthy areas based on species, vegetation types, ecological processes, and threats to biodiversity. Information on species was limited and so could not form the basis of the analysis. Priority vegetation types were identified by degree of endemicity, extent of protection and transformation, and degree of fragmentation. These priority vegetation types and threats to biodiversity were used to define broad linkages between existing protected areas. We set a goal of 10% protection for each vegetation type and 25% for each species. We identified several important (endemic or threatened) animal species and predicted their ranges using a simple model. Species ranges and their hotspots were compared with the distribution of protected areas and the suggested linkages to evaluate increased species representation. Generally, the eastern part of the study area was well protected. Unprotected conservation-worthy areas under greatest threat lay in the west, and protecting these areas is a priority. Furthermore, several vegetation types were not protected by provincial authorities, a situation that also needs to be addressed. The findings of our study need to be reassessed at a finer land-parcel scale, and implementation of a range of land-use options considered.  相似文献   

16.
Abstract: Invertebrates are important functionally in most ecosystems, but seldom appraised as surrogate indicators of biological diversity. Priority species might be good candidates; thus, here we evaluated whether three freshwater invertebrates listed in the U.K. Biodiversity Action Plan indicated the richness, composition, and conservation importance of associated wetland organisms as defined respectively by their alpha diversity, beta diversity, and threat status. Sites occupied by each of the gastropods Segmentina nitida, Anisus vorticulus, and Valvata macrostoma had greater species richness of gastropods and greater conservation importance than other sites. Each also characterized species assemblages associated with significant variations between locations in alpha or beta diversity among other mollusks and aquatic macrophytes. Because of their distinct resource requirements, conserving the three priority species extended the range of wetland types under management for nature conservation by 18% and the associated gastropod niche‐space by around 33%. Although nonpriority species indicated variations in richness, composition, and conservation importance among other organisms as effectively as priority species, none characterized such a wide range of high‐quality wetland types. We conclude that priority invertebrates are no more effective than nonpriority species as indicators of alpha and beta diversity or conservation importance among associated organisms. Nevertheless, conserving priority species can extend the array of distinct environments that are protected for their specialized biodiversity and environmental quality. We suggest that this is a key role for priority species and conservation surrogates more generally, and, on our evidence, can best be delivered through multiple species with contrasting habitat requirements.  相似文献   

17.
Conservation resources are limited, necessitating prioritization of species and locations for action. Most prioritization approaches are based solely on biologically relevant characteristics of taxa or areas and ignore geopolitical realities. Doing so risks a poor return on conservation investment due to nonbiological factors, such as economic or political instability. We considered felids, a taxon which attracts intense conservation attention, to demonstrate a new approach that incorporates both intrinsic species traits and geopolitical characteristics of countries. We developed conservation priority scores for wild felids based on their International Union for Conservation of Nature status, body mass, habitat, range within protected area, evolutionary distinctiveness, and conservation umbrella potential. We used published data on governance, economics and welfare, human population pressures, and conservation policy to assign conservation‐likelihood scores to 142 felid‐hosting countries. We identified 71 countries as high priorities (above median) for felid conservation. These countries collectively encompassed all 36 felid species and supported an average of 96% of each species’ range. Of these countries, 60.6% had below‐average conservation‐likelihood scores, which indicated these countries are relatively risky conservation investments. Governance was the most common factor limiting conservation likelihood. It was the major contributor to below‐median likelihood scores for 62.5% of the 32 felid species occurring in lower‐likelihood countries. Governance was followed by economics for which scores were below median for 25% of these species. An average of 58% of species’ ranges occurred in 43 higher‐priority lower‐likelihood countries. Human population pressure was second to governance as a limiting factor when accounting for percentage of species’ ranges in each country. As conservation likelihood decreases, it will be increasingly important to identify relevant geopolitical limitations and tailor conservation strategies accordingly. Our analysis provides an objective framework for biodiversity conservation action planning. Our results highlight not only which species most urgently require conservation action and which countries should be prioritized for such action, but also the diverse constraints which must be overcome to maximize long‐term success.  相似文献   

18.
Human Impacts on Regional Avian Diversity and Abundance   总被引:1,自引:0,他引:1  
Abstract: Patterns of association between humans and biodiversity typically show positive, negative, or negative quadratic relationships and can be described by 3 hypotheses: biologically rich areas that support high human population densities co‐occur with areas of high biodiversity (productivity); biodiversity decreases monotonically with increasing human activities (ecosystem stress); and biodiversity peaks at intermediate levels of human influence (intermediate disturbance). To test these hypotheses, we compared anthropogenic land cover and housing units, as indices of human influence, with bird species richness and abundance across the Midwestern United States. We modeled richness of native birds with 12 candidate models of land cover and housing to evaluate the empirical evidence. To assess which species were responsible for observed variation in richness, we repeated our model‐selection analysis with relative abundance of each native species as the response and then asked whether natural‐history traits were associated with positive, negative, or mixed responses. Native avian richness was highest where anthropogenic land cover was lowest and housing units were intermediate based on model‐averaged predictions among a confidence set of candidate models. Eighty‐three of 132 species showed some pattern of association with our measures of human influence. Of these species approximately 40% were negatively associated, approximately 6% were positively associated, and approximately 7% showed evidence of an intermediate relationship with human influence measures. Natural‐history traits were not closely related to the direction of the relationship between abundance and human influence. Nevertheless, pooling species that exhibited any relationship with human influence and comparing them with unrelated species indicated they were significantly smaller, nested closer to the ground, had shorter incubation and fledging times, and tended to be altricial. Our results support the ecosystem‐stress hypothesis for the majority of individual species and for overall species diversity when focusing on anthropogenic land cover. Nevertheless, the great variability in housing units across the land‐cover gradient indicates that an intermediate‐disturbance relationship is also supported. Our findings suggest preemptive conservation action should be taken, whereby areas with little anthropogenic land cover are given conservation priority. Nevertheless, conservation action should not be limited to pristine landscapes because our results showed that native avian richness and the relative abundance of many species peaked at intermediate housing densities and levels of anthropogenic land cover.  相似文献   

19.
Abstract:  Any method of identifying hotspots should take into account the effect of area on species richness. I examined the importance of the species-area relationship in determining tenebrionid (Coleoptera: Tenebrionidae) hotspots on the Aegean Islands (Greece). Thirty-two islands and 170 taxa (species and subspecies) were included in this study. I tested several species-area relationship models with linear and nonlinear regressions, including power, exponential, negative exponential, logistic, Gompertz, Weibull, Lomolino, and He-Legendre functions. Islands with positive residuals were identified as hotspots. I also analyzed the values of the C parameter of the power function and the simple species-area ratios. Species richness was significantly correlated with island area for all models. The power function model was the most convenient one. Most functions, however, identified certain islands as hotspots. The importance of endemics in insular biotas should be evaluated carefully because they are of high conservation concern. The simple use of the species-area relationship can be problematic when areas with no endemics are included. Therefore the importance of endemics should be evaluated according to different methods, such as percentages, to take into account different levels of endemism and different kinds of "endemics" (e.g., endemic to single islands vs. endemic to the archipelago). Because the species-area relationship is a key pattern in ecology, my findings can be applied at broader scales.  相似文献   

20.
Abstract: Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species–host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant‐feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971–1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3–10.6 monophages per plant species. I calculated that 213,830–547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号