首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

2.
The successful invasion of non-indigeneous species depends on initial colonization as well as establishing a self-maintaining population. The invasive hydrozoan Moerisia lyonsi (Boulenger, 1908), possibly originating from low-salinity waters in the Black Sea and Middle East regions, has become established in low-salinity waters in several estuaries of North America, including Chesapeake Bay. The effects of temperature and salinity on mortality of M. lyonsi polyps were examined in the laboratory in February 2001 in the presence of abundant food. The polyps of M. lyonsi were directly transferred from 20°C and 10 salinity to one of 45 combinations of temperature (10–29°C) and salinity (1–40). Polyp mortality within 7 days occurred only in low-temperature treatments with salinities of 35–40. Surviving polyps reproduced asexually in salinities of 1–40 at 20–29°C, and in salinities of 1–25 at 15°C, but not in any salinities at 10°C. The greatest asexual reproduction rates, an index for population survival potential, occurred at salinities of 5–20. Survival and reproduction of M. lyonsi over such broad temperature and salinity ranges indicate that M. lyonsi may colonize and establish populations throughout the Chesapeake Bay; however, M. lyonsi medusae were reported only at salinities <9.3 there. This discrepancy may be due to the effects of predators. The scyphomedusan Chrysaora quinquecirrha (Desor, 1848), but not the ctenophore Mnemiopsis leidyi (A. Agassiz, 1865) consumed M. lyonsi medusae in laboratory experiments in August–September 2001. Populations of M. lyonsi do not appear to be limited by temperature and salinity conditions; however, their distribution in Chesapeake Bay may be restricted to low salinities not inhabited by predators.Communicated by J.P. Grassle, New Brunswick  相似文献   

3.
D. Carré  C. Carré 《Marine Biology》1990,104(2):303-310
Eucheilota paradoxica Mayer, 1900 is a small leptomedusa unknown in the Mediterranean Sea until 1977. Since then, it has become endemic and occurs in great abundance in autumn in the bay of Villefranche-sur-mer. Since no sexual stages have ever been collected, either from the Atlantic Ocean or from the Mediterranean Sea, we decided to investigate the still unknown life cycle of this species. Specimens were obtained in the bay of Villefranche-sur-mer from plankton hauls between 0 and 50 m depth during October and November 1986. At temperatures >18°C, the medusa reproduces intensively by asexual medusal budding (one young medusa liberated per two days). This asexual reproduction explains the rapid proliferation of the species and the origin of the large population every autumn. In cultures maintained at temperatures <18°C, two other reproduction modes, not yet reported in a leptomedusa, were observed: (1) At 16° to 17°C, frustules bud along the canals; these frustules are dormant, giving rise to a small polyp when the temperature increases once more above 18°C. (2) At temperatures close to 15°C each medusa, in place of the gonads, differentiate into one or two polyps; these polyps develop progressively, concomitant with gradual regression of the mother medusa.  相似文献   

4.
There is increasing evidence that suspension feeders play a significant role in plankton–benthos coupling. However, to date, active suspension feeders have been the main focus of research, while passive suspension feeders have received less attention. To increase our understanding of energy fluxes in temperate marine ecosystems, we have examined the temporal variability in zooplankton prey capture of the ubiquitous Mediterranean gorgonian Leptogorgia sarmentosa. Prey capture was assessed on the basis of gut content from colonies collected every 2 weeks over a year. The digestion time of zooplankton prey was examined over the temperature range of the species at the study site. The main prey items captured were small (80–200 µm), low-motile zooplankton (i.e. eggs and invertebrate larvae). The digestion time of zooplankton prey increased when temperature decreased (about 150% from 21°C to 13°C; 15 h at 13°C, 9 h at 17°C, and 6 h at 21°C), a pattern which has not previously been documented in anthozoans. Zooplankton capture rate (prey polyp–1 h–1) varied among seasons, with the greatest rates observed in spring (0.16±0.02 prey polyp–1 h–1). Ingestion rate in terms of biomass (g C polyp–1 h–1) showed a similar trend, but the differences among the seasons were attenuated by seasonal differences in prey size. Therefore, ingestion rate did not significantly vary over the annual cycle and averaged 0.019±0.002 g C polyp–1 h–1. At the estimated ingestion rates, the population of L. sarmentosa removed between 2.3 and 16.8 mg C m–2 day–1 from the adjacent water column. This observation indicates that predation by macroinvertebrates on seston should be considered in energy transfer processes in littoral areas, since even species with a low abundance may have a detectable impact.Communicated by S.A. Poulet, Roscoff  相似文献   

5.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

6.
Gorgonians are passive suspension feeders, contributing significantly to the energy flow of littoral ecosystems. More than in active suspension feeders (such as bivalves, ascidians and sponges) their prey capture is affected by spatial and temporal prey distribution and water movement. Corallium rubrum is a characteristic gorgonian of Mediterranean sublittoral hard bottom communities. This study found a high variability in the annual cycle of prey capture rate, prey size and ingested biomass, compared to other Mediterranean gorgonians. Detrital particulate organic matter (POM) was found throughout the year in the polyp guts and constituted the main proportion of the diet (25–44%). Crustacean fragments and copepods (14–46%) accounted for the second major proportion, while invertebrate eggs (9–15%) and phytoplankton (8–11%) constituted the smallest part of the diet. To verify the importance of detrital POM in the energy input of this precious octocoral species, in situ experiments were carried out during the winter–spring period. The results confirm the importance of detrital POM as the main source of food for C. rubrum [0.13±0.04 μg C polyp−1 h−1 (mean±SD)]. This study also compares the prey capture rates of two colony size classes and two depth strata: Within the same patch, small colonies (<6 cm height) captured significantly more prey per polyp (0.038±0.09 prey polyp−1 h−1) than larger colonies (>10 cm high) (0.026±0.097 prey polyp−1 h−1) and showed a higher proportion of polyps containing prey (17% compared to 10%). Comparing colonies of similar size (<6 cm height) revealed that the colonies situated at 40 m depth captured significantly more prey (0.038±0.09 prey polyp−1 h−1) than the ones at 20 m (0.025±0.11 prey polyp−1 h−1). One pulse of copepods was recorded that constituted 16% of all captured prey during the 15-month period studied in one of the sampled populations. The data suggest that the variability of hydrodynamic processes may have a higher influence on the feeding rate than seasonal changes in the seston composition. The carbon ingestion combined with data on the density of the exploited population results in 0.4–9.6 mg C m−2 day−1. The grazing impact of current, heavily exploited and small-sized populations is comparable to that of larger Mediterranean gorgonians, suggesting that unexploited red coral populations may have a high impact compared with other passive suspension feeders.  相似文献   

7.
The polyp (scyphistoma) of the jellyfish Cassiopea andromeda reproduces asexually repeatedly, while the medusa, the sexually reproducing stage, exhibits a relatively shorter life span. As a first step to understand the mechanism behind the differences in the life spans of the polyp and medusa stages of the jellyfish, we compared the lengths of the telomere region of one targeted chromosome between the polyp and medusa stages using a modified single telomere length assay (STELA). The double-stranded regions of the telomeres were amplified by PCR, and the average length of the PCR products was estimated by densitometry analysis of the gel smear. Chromosomes within cells of the bell region of the medusa were characterized by longer telomeres than those of polyps, asexual propagules, or other regions of the medusa. This is the first study to estimate the telomere lengths of targeted chromosomes in a cnidarian and opens a way to understand the mechanism underlying different life spans of the polyp and medusa stages.  相似文献   

8.
9.
T. W. Snell 《Marine Biology》1986,92(2):157-162
The reproductive response of sexual and asexual female Brachionus plicatilis (Muller) was examined over temperatures ranging from 20° to 40°C, salinities from 5 to 40 S, and food levels from 0.25 to 20 g Chlorella vulgaris dry-weight per ml. Reduced food levels, as well as temperature and salinity extremes, reduced reproduction of both sexual and asexual females, but did so differentially. Reproduction by sexual females was reduced to a greater extent at environmental extremes than asexual females. The broad, flat reproductive response curve of asexual females extended beyond the limits of the narrower, more sharply peaked curve of sexual females. Thus zones of exclusively asexual reproduction exist at environmental extremes where sexual reproduction is physiologically restricted. These results are corroborated by a comparison of the lifetime fecundity of individual sexual and asexual females over a 20°C temperature range. No differences in lifetime fecundity occurred between sexual and asexual females at 18° and 28°C. At 38°C, however, asexual female fecundity reached its highest level, while sexual female fecundity declined 15%. The appearance of sexual females in rotifer populations in the result of both inducible and repressible factors.  相似文献   

10.
The species Thecoscyphus zibrowii Werner, 1984 has an exceptional life cycle, which lacks a medusa stage but develops an extraordinary structure (egg sac) for reproduction. Investigation of the life cycle, as well as anatomical and histological studies of the different developmental stages of T. zibrowii were performed to provide evidence for a possible homology of the egg sac with the medusa stage and to determine whether the reduced metagenesis of T. zibrowii is derived from strobilation. The egg sac showed several characteristics, which were compared to those of coronate medusae. The ectodermis of the egg sac had a plate-like appearance and was completely ciliated as is typical for coronate medusae. The number and the location of the gonads were similar to those of coronate medusae. The cnidocysts were significantly larger in the egg sac than in the polyp. A size difference of cnidocysts in the medusa and the polyp stage is known for several Coronatae. Characteristics of egg sac formation were compared to characteristics of strobilation. The formation of the early operculum was similar in T. zibrowii and N. eumedusoides. The constriction of egg sac and strobila occurred in the same mode and the gastric cavities of two egg sacs stayed in contact in a similar fashion to the gastric cavities of the strobila discs. The developmental zones of cnidoblasts of the egg sac and polyp were separated during the formation of the egg sac which showed a similar developmental gradient to a strobila. The existence of all of these consistent characteristics makes it very likely that the egg sac structure was homologous to a medusa. The species T. zibrowii would therefore be derived from a metagenetic ancestor. This species has reduced the medusa generation to the greatest extent within the Nausithoidae and has demonstrated thus far the endpoint of a regressive evolution of the medusa generation.  相似文献   

11.
A. C. Anil  J. Kurian 《Marine Biology》1996,127(1):115-124
Influence of food concentration (0.5, 1 and 2 x 105 cell ml–1 ofSkeletonema costatum), temperature (20 and 30°C) and salinity (15, 25 and 35) on the larval development ofBalanus amphitrite (Cirripedia: Thoracica) was examined. The mortality rate at 20°C was lower than at 30°C in general. Increase in food concentration from 0.5 to 1 x 105 cells ml–1 improved the survival rate, but this was not evident when food concentration was increased to 2 x 105 cells ml–1. The results indicate that food availability and temperature jointly determine the energy allocation for metamorphic progress. It was observed that the influence of the tested variables varied with instar. At 20 °C the mean duration of the second instar exceeded 3 d and was much longer than other instar durations. The fourth, fifth and sixth instars and the total naupliar period showed that the effect of different salinities at given food concentrations was negligible at 20°C, while at 30°C there was a marked decrease in duration with increasing salinity.  相似文献   

12.
Swarms of the pelagic tunicate, Thalia democratica, form during spring, but the causes of the large interannual variability in the magnitude of salp swarms are unclear. Changes in asexual reproduction (buds per chain) of T. democratica populations in the coastal waters of south-east Australia (32–35°S) were observed in three austral springs (October 2008–2010). T. democratica abundance was significantly higher in 2008 (1,312 individuals m?3) than 2009 and 2010 (210 and 92 individuals m?3, respectively). There was a significant negative relationship (linear regression, r 2 = 0.61, F 1,22 = 33.83, P < 0.001) between abundance and asexual reproduction. Similarly, relative growth rates declined with decreasing abundance. Generalised additive mixed modelling showed that T. democratica abundance was significantly positively related to preferred food >2 μm in size (P < 0.05) and negatively related to the proportion of non-salp zooplankton (P < 0.001). Salp swarm magnitude, growth, and asexual reproduction may depend on the abundance of larger phytoplankton (prymnesiophytes and diatoms) and competition with other zooplankton.  相似文献   

13.
Filtration rates and the extent of phagocytosed food particles were determined in the offshore lamellibranchs Artica islandica and Modiolus modiolus in relation to particle concentration, body size and temperature. Pure cultures of the algae Chlamydomonas sp. and Dunaliella sp. were used as food. A new method for determining filtration rates was developed by modifying the classical indirect method. The concentration of the experimental medium (100%) was kept constant to ±1%. Whenever the bivalves removed algae from the medium, additional algae were added and the filtration rate of the bivalves expressed in terms of percentage amount of algae added per unit time. The concentration of the experimental medium was measured continuously by a flow colorimeter. By keeping the concentration constant, filtration rates could be determined even in relation to different definite concentrations and over long periods of time. The amount of phagocytosed food was measured by employing the biuret-method (algae cells ingested minus algae cells in faeces). Filtration rates vary continuously. As a rule, however, during a period of 24 h, two phases of high food consumption alternate with two phases of low food consumption during which the mussels' activities are almost exclusively occupied by food digestion. Filtration rate and amount of phagocytosed algae increase with increasing body size. Specimens of A. islandica with a body length of 33 to 83 mm filter between 0.7 to 71/h (30–280 mg dry weight of algae/24 h) and phagocytose 21 to 122 mg dry weight of algae during a period of 24 h. The extent of food utilization declines from 75 to 43% with increasing body size. In M. modiolus of 40 to 88 mm body length, the corresponding values of filtration rate and amount of phagocytosed algae range between 0.5 and 2.5 l/h (20–100 mg dry weight of algae) and 17 to 90 mg dry weight of algae, respectively; the percentage of food utilization does not vary much and lies near 87%. Filtration rate and amount of phagocytosed algae follow the allometric equation y=a·x b. In this equation, y represents the filtration rate (or the amount of phagocytosed algae), a the specific capacity of a mussel of 1 g soft parts (wet weight), x the wet weight of the bivalves' soft parts, and b the specific form of relationship between body size and filtration rate (or the amount of phagocytosed algae). The values obtained for b lie within a range which indicates that the filtration rate (or the amount of phagocytosed algae) is sometimes more or less proportional to body surface area, sometimes to body weight. Temperature coefficients for the filtration rate are in Arctica islandica Q10 (4°–14°C)=2.05 and Q10 (10°–20°C)=1.23, in Modiolus modiolus Q10 (4°–14°C)=2.33 and Q10 (10°–20°C)=1.63. In A. islandica, temperature coefficients for the amount of phagocytosed algae amount to Q10 (4°–14°C)=2.15 and Q10 (10°–20°C)=1.55, in M. modiolus to Q10 (4°–14°C)=2.54 and Q10 (10°–20°C)=1.92. Upon a temperature decrease from 12° to 4°C, filtration rate and amount of phagocytosed algae are reduced to 50%. At the increasing concentrations of 10×106, 20×106 and 40×106 cells of Chlamydomonas/l offered, filtration rates of both mollusc species decrease at the ratios 3:2:1. At 12°C, pseudofaeces production occurs in both species in a suspension of 40×106, at 20°C in 60×106 cells of Chlamydomonas/l. At 12°C and 10–20×106 cells of Chlamydomonas/l, the maximum amount of algae is phagocytosed. At 40×106 cells/l, the amount of phagocytosed cells is reduced by 26% as a consequence of low filtration rates and intensive production of pseudofaeces. At 20°C and 20–50×106 cells of Chlamydomonas/l, the maximum amount of algae is sieved out and phagocytosed; the concentration of 10×106 cells/l is too low and cannot be compensated for by increased activity of the molluscs. With increasing temperatures, the amount of suspended matter, allowing higher rates of filtration and food utilization, shifts toward higher particle concentrations; but at each temperature a threshold exists, above which increase in particle density is not followed by increase in the amount of particles ingested. Based on theoretical considerations and facts known from literature, 7 different levels of food concentration are distinguishable. Experiments with Chlamydomonas sp. and Dunaliella sp. used as food, reveal the combined influence of particle concentration and particle size on filtration rate. Supplementary experiments with Mytilus edulis resulted in filtration rates similar to those obtained for M. modiolus, whereas, experiments with Cardium edule, Mya arenaria, Mya truncata and Venerupis pullastra revealed low filtration rates. These species, inhabiting waters with high seston contents, seem to be adapted to higher food concentrations, and unable to compensate for low concentrations by higher filtration activities. Adaptation to higher food concentrations makes it possible to ingest large amounts of particles even at low filtration rates. Suspension feeding bivalves are subdivided into four groups on the basis of their different food filtration behaviour.  相似文献   

14.
Rates of routine respiration (R R, μl O2 fish−1 h−1) and total ammonia nitrogen excretion (E R, μg NH4–N + NH3–N fish−1 h−1) were measured on larval and juvenile haddock (Melanogrammus aeglefinus) to ascertain how energy losses due to metabolism were influenced by temperature (T), dry body mass (M D, mg) and specific growth rate (SGR, % per day). R R and E R increased with M D according to y =  · M D b with b-values of 0.96, 0.98, 1.14, and 0.89, 0.78, 0.74, respectively, at 10, 7, and 4°C, respectively. Multiple regressions explained 98% of the variability in the combined effects of M D and T on R R and E R in larval haddock: R R = 0.97 · M D 0.98  · e0.092 · T ; E R = 0.06 · M D 0.79  · e0.092 · T . In young juvenile (24–30 mm standard length) haddock, R R tended to decline (P = 0.06) and E R significantly declined (P = 0.02) with increasing SGR. O:N ratios significantly increased with increasing SGR suggesting that N was spared in relatively fast-growing individuals. Our results for young larval and juvenile haddock suggest: (1) nearly isometric scaling of R R with increasing body size, (2) allometric scaling of E R with increasing body size, (3) Q 10 values of 2.5 for both R R and E R, (4) metabolic differences in substrate utilization between relatively fast- and slow-growing individuals, and (5) that rates of routine energy loss and growth were not positively related. The measurements in this study will provide robust parameter estimates for individual-based models that are currently being utilized to investigate how variability in climatic forcing influences the vital rates of early life stages of haddock. Our results also stress that inter-individual differences in rates of energy loss should not be overlooked as a factor influencing growth variability among individuals.  相似文献   

15.
Scyphistomae of Cassiopea andromeda Forskål, 1775 containing symbiontic zooxanthellae did not develop medusae at a constant temperature of 20°C, but monodisc strobilation was initiated after transfer of the polyps to 24°C. After release of the ephyrae and regeneration of the hypostome and tentacular region, the recovered polyps either produced vegetative buds or entered a new strobilation phase. Formation of motile, planula-like buds was not found to be indicative of unfavourable environmental conditions. Intensity of budding was positively correlated with available food and with increase of temperature. Budding was negatively correlated with the number of polyps maintained per dish and with the conditioning of the sea water. Under optimal feeding and temperature conditions, polyps could simultaneously produce chains of buds at 2 to 4 budding regions. Settlement and development of buds into scyphistomae was suppressed in pasteurized sea water and in pasteurized sea water containing antibiotics, but polyps developed from buds in the presence of algal material taken from the aquarium, debris or egg shells of Artemia salina, or on glass slides which had been incubated in used A. salina culture medium. Several species of marine bacteria were detected after staining these slides. One, a Gramnegative coccoid rod, which was identified as a nonpathogenic Vibrio species, was isolated, cultivated as a pure strain, and was proved to induce the development of C. andromeda buds into polyps. Millipore filter-plates coated with Vibrio sp. cells grown in suspension culture were ineffectual, but diluted filtrate initiated polyp morphogenesis. The inducing factor is obviously not a constituent of the bacterial cell surface, but is a product of growing Vibrio sp. cells released into the medium. This product was found to be relatively heat-stable and dialyzable. As to the basic mechanism involved in the induction of polyp formation, it is suggested that the inducing factor (s) acts bimodally by inducing pedal disc development and by eliminating a head inhibitor originating from the basal end of the bud. The life history, and various aspects of medusa-formation and of vegetative reproduction in scyphozoans are reviewed and discussed with particular reference to rhizostome species. Special attention has been paid to some reports of larval metamorphosis controlled by marine bacteria.  相似文献   

16.
Juvenile weakfish, Cynoscion regalis (Bloch and Schneider, 1801), exhibit significant spatial diffrences in growth rate and condition factor among estuarine nursery zones in Delaware Bay. The potential influence of temperature and salinity on the suitability of estuarine nursery areas for juvenile weakfish was investigated in laboratory experiments by measuring ad libitum feeding rate, growth rate and gross growth efficiency of juveniles collected in Delaware Bay in 1990 (40 to 50 mm standard length; 1.4 to 2.1 g) in 12 temperature/salinity treatments (temperatures: 20, 24, 28°C; salinities: 5, 12, 19, 26 ppt) representing conditions encountered in different estuarine zones during spring/summer. Feeding rates (FR) increased significantly with temperature at all salinities, ranging from 10 to 15% body wt d-1 at 20°C to 33–39% body wt d-1 at 28°C. Specific growth rates (SGR) ranged from 1.4 to 9.4% body wt d-1 (0.3 to 1.5 mm d-1) and gross growth efficiencies (K 1) varied from 13.6 to 26.4% across temperature/salinity combinations. Based on nonlinear multiple regression models, predicted optimal temperatures for SGR and K 1 were 29 and 27°C, respectively. Salinity effects on SGR and K 1 were significant at 24 and 28°C where predicted optimal salinity was 20 ppt. At these warmer temperatures, SGR and K 1 were significantly lower at 5 than at 19 ppt despite higher FR at 5 ppt. Therefore, maximum growth rate and growth efficiency occurred under conditions characteristic of mesohaline nurseries. This finding is consistent with spatial patterns of growth in Delaware Bay, implying that physicochemical gradients influence the value of particular estuarine zones as nurseries for juvenile weakfish by affecting the energetics of feeding and growth. Laboratory results indicate a seasonal shift in the location of physiologically optimal nurseries within estuaries. During late spring/early summer, warmer temperatures in oligohaline areas permit higher feeding rate and faster growth compared to mesohaline areas. By mid-late summer, spatial temperature gradients diminish and mesohaline areas provide more suitable physicochemical conditions for growth rate and growth efficiency whereas oligohaline areas become energetically stressful. Substantial mortality occurred at 5 ppt and 28°C, providing additional evidence that oligohaline conditions are stressful during late summer. Furthermore, juveniles provided a choice among salinities in laboratory trials preferred those salinities which promoted higher growth rates. The extensive use of oligohaline nurseries by juvenile weakfish despite the potential for reduced growth rate and growth efficiency suggests this estuarine zone may provide a substantial refuge from predation.  相似文献   

17.
The diatom Cylindrotheca closterium was exposed to transient light- and osmotic conditions as occur during its tidal emersion. The objective was to analyze how this simulated emersion contributes to the production of active oxygen species (AOS) and via this, to oxidative cell damage. Light- and salinity conditions were varied in factorial combination: low light (no UVB) or high light (unweighted UVB-dose rates of respectively 0.01; 0.07; 0.24; 1.03 W m−2) at normal (30 psu) or high salinity (60 psu). UVB (0.01–0.24 W m−2) and high salinity had a significant, negative effect on the photosynthetic efficiencies ΔF/F m’ (steady-state quantum yield) and F v/F m (maximum yield). UVB at 1.03 W m−2 (15 kJ m−2 d−1) almost arrested electron transport. At ecologically relevant UVB levels, i.e. below 0.24 W m−2 (≈3.4 kJ m−2 d−1) with UVB:PAR<0.4:100 (PAR photosynthetically active radiation) only dynamic photoinhibition was observed (protection via heat dissipation). Non-photochemical quenching was positively correlated with the de-epoxidation of diadinoxanthin (DD) to diatoxanthin (DT). A decreasing ratio DT/(DD+DT) after 4 h of UVB at >0.07 W m−2 and at 60 psu indicated a reversal of the diatom xanthophyll cycle (diminished photoprotection) which may be caused by an enhanced AOS production. Oxidative stress and -damage to C. closterium cells were assessed applying fluorescent indicator dyes, via confocal microscopy and quantitative image analysis. AOS production rates (cellular DCF fluorescence) were stimulated by UV, and were ~50% higher at 60 psu. AOS production decreased with an increasing pre-exposure (0–4 h) to normal UVB (0.24 W m−2), which indicated a stimulation of the antioxidative defence. Non-protein thiols (indicator CMF) and glutathione pools (HPLC-analyzed) decreased with UVB-dose rates (0.01–0.24 W m−2), most likely due to AOS-mediated thiol oxidation. Hypersalinity (60 psu) and UVB (0.01–0.24 W m−2) caused membrane depolarization (dye DIBAC4(3)) and phospholipid hydrolysis (phospholipase A2 dye: bis-BODIPY FL-C11-PC). AOS production may have diminished the membrane polarity, and peroxidized the membrane lipids (HPLC-analyzed malondialdehyde) which enhanced PLA2 activity. The dyes indicated an increased oxidative (lipid) damage at a 15% inhibition of photosynthesis in this diatom, at UVB levels and salinities that can be expected in situ during its periodic tidal emersion.  相似文献   

18.
This study investigates the feeding behaviour of the precious red coral Corallium rubrum on bacterioplankton. The effects of flow rate, prey concentration, and seawater temperature were tested. The results obtained show that C. rubrum was able to prey on both pico- and nanoplankton cells. Flagellates constituted the major bacterioplankton food source in terms of carbon and nitrogen, representing from 43 to 70% of the C and N ingested. Flow speed (2, 6, and 11 cm s−1) had no effect on grazing rates, maybe due to the small size of the ingested particles. Conversely, feeding rates increased with prey concentration and seawater temperature. There was a doubling of the picoplankton ingestion rate for a sixfold increase in its concentration. The ingestion of autotrophic flagellates, however, increased at the same time as their concentration, indicating a preference for this type of food. Considering the range of concentrations typically found in the Ligurian Sea, the ingestion of pico- and nanoplankton brings 148 ng C polyp−1 day−1 and 28 ng N polyp−1 day−1. This type of food represents only ca. 4.5% of the total carbon gained by C. rubrum from the different sources, but might be the most important in terms of nitrogen, phosphorus, and other essential elements.  相似文献   

19.
A psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913, was isolated from deep-sea sediment collected at 1,855 m depth. Two proteases produced by Pseudoaltermonas sp. SM9913 were purified, MPC-01 and MCP-02. MCP-01 is a serine protease with a molecular weight of 60.7 kDa. It is cold-adapted with an optimum temperature of 30–35°C. Its Km and Ea for the hydrolysis of casein were 0.18% and 39.1 kJ mol–1, respectively. It had low thermostability, and its activity was reduced by 73% after incubation at 40°C for 10 min. MCP-02 is a mesophilic metalloprotease with a molecular weight of 36 kDa. Its optimum temperature for the hydrolysis of casein was 50–55°C. The Km and Ea of MCP-02 for the hydrolysis of casein were 0.36% and 59.3 kJ mol–1, respectively. MCP-02 had high thermostability, and its activity was reduced by only 30.5% after incubation at 60°C for 10 min. At low temperatures, Pseudoaltermonas sp. SM9913 mainly produced the psychrophilic protease MCP-01.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
Predictions of short and long term changes in Sepia officinalis metabolism are useful, since this species is both economically important for aquaculture and also is an ideal experimental laboratory organism. In this study standard and routine oxygen consumption rates of newly hatched and juvenile laboratory raised cuttlefish S. officinalis ranging between 0.04 and 18.48 g dry body mass (Dm), were measured over a range of temperatures (10, 15, 20 and 25°C). The mass exponent (b) ranged between 0.706 and 0.992 for standard oxygen consumption and between 0.694 and 0.990 for routine oxygen consumption. Oxygen consumption scaled allometrically (b = 0.7) with body mass for cuttlefish <2 g Dm and isometrically (b = 1) thereafter. No significant differences were apparent amongst the slopes of oxygen consumption and body mass at different temperatures for standard and routine oxygen consumption. However, the intercepts differed significantly amongst the regression lines, indicating a significant effect of temperature on the magnitude of oxygen consumption. The combined effect of temperature (T) and dry body mass (Dm) are best described by the following equations: cuttlefish <2 g, MO2 = 0.116Dm0.7111.086 T and >2 g, MO2 = 0.076Dm0.9831.091 T for standard oxygen consumption; cuttlefish <2 g, MO2 = 0.538Dm0.7291.057 T and >2 g, MO2 = 0.225Dm0.9621.081 T for routine oxygen consumption. Using these equations it was estimated that a cuttlefish of 1 g Dm held at 20°C, eating 5% Dm day−1 and undergoing standard and routine metabolism consumes 21.3 and 35.4%, respectively of its total daily energy intake. Juvenile cuttlefish (3.32–5.08 g Dm) held at 15°C and deprived of food for 27 days maintained a stable standard oxygen consumption rate for the first 6 days following starvation. By the 18th day without food, oxygen consumption rate had declined by 53% and further declined to 65% below the standard oxygen consumption rate on the 27th day. Upon resumption of feeding, the respiration rate returned immediately to the initial level prior to food deprivation. The present study defines the basic energy requirements and general physiological state of young cuttlefish at temperatures of 10–25°C with and without food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号