首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swamp drainage system over an eight-year period. Three changes in the ash basin settling system were made between mid- 1973 and January 1982. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic Ph excursions (mean of 5.5, extreme of 3.5) after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH, along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long, chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the U.S. Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. From collective elemental exposures in the receiving system, bioconcentration factors in macrophytes, invertebrates and fish were generally lower than those reported in the literature for laboratory, single elemental concentrations. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquitofish populations recovered within one year afterward.  相似文献   

2.
ABSTRACT: Natural aquatic bacterial populations in three streams located at the Savannah River Project, Aiken, S.C. have been studied in relation to the effects of ambient temperatures, dissolved River Project, Aiken, oxygen (DO), nitrate and phosphate concentrations. 3 3 This work was supported in part by Contract #AT (38–1–824) with the U.S. Atomic Energy Commission, and was done in part in connection with AEC Contract #AT (07–2)–1.
Samples collected at monthly intervals for a period of one year from each system, were plated in duplicate at each of two dilutions on 1/4 strength Standard Plate Count Agar (Difco). After incubation at 25±1 °C for four days, total colony forming units, percent chromagens, and number of colony types (diversity) were determined and colonies were picked for identification. Temperatures were generally equal in two of the streams throughout the year, being lowest in Upper Three Runs (U3R) and Tirns Branch (TB), and highest in the Ash Basin System (ABS). DO content did not vary appreciably between the streams. Nitrates and phosphates were lowest in U3R, next lowest in TB, higher in the last station in ABS, and highest in the ash basin per se. Total colony forming units were highest in the ash basin, whereas chromagen percentage and diversity were highest in the last station in ABS. Results of these studies indicate that high nitrates and phosphates, in the absence of high organic carbon concentrations, have little, if any detrimental effect on the stability of natural aquatic bacterial populations.  相似文献   

3.
Phleum pratense and Poa pratensis were significantly lower (P ≤ 0.001) on plots with more than 250 ppm copper. Above-ground biomass of Phleum pratense was also significantly lower on plots with copper levels above 250 ppm. Decreased mean grass density was found on plots with pH < 6.4, but the only statistically significant difference was for Juncus balticus, which had increased density on plots with pH < 6.4. In contrast to the clear impacts of trace metals and pH on vegetation, other site characteristics did not alter measured vegetation characteristics.  相似文献   

4.
ABSTRACT: The naturally occurring, aerobic, heterotrophic bacterial populations of two impounded ecosystems were studied in a laboratory tank system. One reservoir received runoff from a rural drainage basin only, while the second received treated municipal sewage, industrial waste and heavy recreational use. Water from each reservoir was treated with 1.4 ppm final concentration of diuron and studied for total bacterial counts and nutritional source types. Control tanks were studied concurrently. Total counts increased shortly after diuron addition; however, this was followed by a decrease to a level below the control. Reduction in diversity was significantly greater in water from the polluted reservoir, but chromagenic bacteria were significantly reduced in the non-polluted reservoir. The effects on isolation of specific nutrient types from the two systems following herbicide addition revealed that starch utilizers were the most affected group. Bacteria growing on protein or glucose salts were essentially unaffected. (KEY TERMS: Diuron; Bacteria; Herbicides in Aquatic Environments; Chromagenic Bacteria: Natural Aquatic Bacteria.)  相似文献   

5.
Abstract: We compared summer stream temperature patterns in 40 small forested watersheds in the Hoh and Clearwater basins in the western Olympic Peninsula, Washington, to examine correlations between previous riparian and basin‐wide timber harvest activity and stream temperatures. Seven watersheds were unharvested, while the remaining 33 had between 25% and 100% of the total basin harvested, mostly within the last 40 years. Mean daily maximum temperatures were significantly different between the harvested and unharvested basins, averaging 14.5°C and 12.1°C, respectively. Diurnal fluctuations between harvested and unharvested basins were also significantly different, averaging 1.7°C and 0.9°C, respectively. Total basin harvest was correlated with average daily maximum temperature (r2 = 0.39), as was total riparian harvest (r2 = 0.32). The amount of recently clear‐cut riparian forest (<20 year) within 600 m upstream of our monitoring sites ranged from 0% to 100% and was not correlated to increased stream temperatures. We used Akaike’s Information Criteria (AIC) analysis to assess whether other physical variables could explain some of the observed variation in stream temperature. We found that variables related to elevation, slope, aspect, and geology explain between 5% and 14% more of the variability relative to the variability explained by percent of basin harvested (BasHarv), and that the BasHarv was consistently a better predictor than the amount of riparian forest harvested. While the BasHarv is in all of the models that perform well, the AIC analysis shows that there are many models with two variables that perform about the same and therefore it would be difficult to choose one as the best model. We conclude that adding additional variables to the model does not change the basic findings that there is a relatively strong relationship between maximum daily stream temperatures and the total amount of harvest in a basin, and strong, but slightly weaker relationship between maximum daily stream temperatures and the total riparian harvest in a basin. Seventeen of the 40 streams exceeded the Washington State Department of Ecology’s (DOE) temperature criterion for waters defined as “core salmon and trout habitat” (class AA waters). The DOE temperature criterion for class AA waters is any seven‐day average of daily maximum temperatures in excess of 16°C. The probability of a stream exceeding the water quality standard increased with timber harvest activity. All unharvested sites and five of six sites that had 25‐50% harvest met DOEs water quality standard. In contrast, only nine of eighteen sites with 50‐75% harvest and two of nine sites with >75% harvest met DOEs water quality standard. Many streams with extensive canopy closure, as estimated by the age of riparian trees, still had higher temperatures and greater diurnal fluctuations than the unharvested basins. This suggests that the impact of past forest harvest activities on stream temperatures cannot be entirely mitigated through the reestablishment of riparian buffers.  相似文献   

6.
ABSTRACT: The potentially toxic components in coal ash (ash particles, heavy metals) were evaluated in laboratory static, acute (96 hr) bioassays, both separately and in various combinations with extreme pH (5.0 and 8.5), using rainbow trout (Salmo gairdneri) and bluegifi sunfish (Lepomis macrochirus). Ash particle morphology and metal distribution anlaysis, using electron microscopy and surface-subsurface analysis by ion microscopy, showed that metals could be either clumped or evenly distributed on the surface of fly ash. Surface enrichment on fly ash particles from electrostatic precipitators, as measured by ion microscopy, was found for cadmium, copper, chromium, nickel, lead, mercury, titanium, arsenic, and selenium. Bottom (heavy) ash was not acutely toxic to either fish species at concentrations of up to 1500 mg/l total suspended solids (TSS) at pH 5.0, 7.5, or 8.5. Fly ash particles were not acutely toxic to blue-gill at levels up to 1360 mg/l TSS. Rainbow trout were highly sensitive to fly ash (25 to 60 percent mortality) at concentrations of 4.3 to 20.5 mg/I TSS when dissolved metal availability was high but were not sensitive at higher particulate concentrations (58 to 638 mg/I TSS) when dissolved metals were low. When metals were acid-leached from fly ash prior to testing, no rainbow trout mortality occurred at TSS concentrations of up to 2,350 mg/l TSS. When the percent of dissolved metal was high (e.g., 50–90 percent of the total), fish mortality was increased. Rainbow trout were nearly two orders of magnitude more sensitive than bluegill when subjected to a blend of cadmium, chromium, copper, nickel, lead, and zinc. The two species were similar in their acute sensitivity to acidic pH at levels at or below 4.0 and alkaline pH of 9.1. If the pH of coal ash effluent is contained within the range 6.0 to 9.0, acute toxicity to fish can be attributed to trace element availability from fly ash but not heavy ash. Control of holding pond and effluent pH and maximizing pond residence time are important strategies for minimizing effects of ash pond discharges on fish.  相似文献   

7.
We developed a stochastic hourly stream temperature model (SHSTM) to estimate probability of exceeding given threshold temperature (T) for specified durations (24 and 96 h) to assess potential impacts on freshwater mussels in the upper Tar River, North Carolina. Simulated daily mean stream T from climate change (CC) and land‐use (LU) change simulations for 2021‐2030 and 2051‐2060 were used as input to the SHSTM. Stream T observations in 2010 revealed only two sites with T above 30°C for >24 h and Ts were never >31°C for more than 24 h at any site. The SHSTM suggests that the probability, P, that T will exceed 32°C for at least 96 h in a given year increased from P = 0, in the 20th Century, to P = 0.05 in 2021‐2030 and to P = 0.14 in 2051‐2060. The SHSTM indicated that CC had greater effects on P for 24 and 96 h durations than LU change. Increased P occurred primarily in higher order stream segments in the downstream reaches of the basin. The SHSTM indicated that hourly stream T responded to LU change on the daily scale and did not affect stream T for durations >24 h. The SHSTM indicated that known thermal thresholds for freshwater mussels could be exceeded within the next 50 years in many parts of the upper Tar River basin in North Carolina, which could have negative consequences on the recruitment of freshwater mussels.  相似文献   

8.
Rolling microcosm experiments were conducted to determine whether suspended particles affect the survival and viability of a model pathogen, Salmonella choleraesuis, serotype typhimurium (American Type Culture Collection no. 23567), in a freshwater microbial community. Water from the Duluth, MN harbor of Lake Superior (including native microorganisms) was inoculated with clay, silt, or flocculent organic particles in a range of concentrations and a streptomycin-resistant strain of S. typhimurium. Microcosms (incubated at 20 degrees C) were rolled horizontally (3 rpm) and sampled periodically for total bacteria and total, viable, and culturable S. typhimurium. Total S. typhimurium abundance decreased rapidly in all experiments (8.5-73.1% d-1). Total bacteria did not decrease as rapidly as the S. typhimurium population in any experiment, suggesting that a microcosm effect was not responsible for the decline in S. typhimurium populations. Loss rates of attached and free cells were similar, indicating that attachment to particles did not enhance the persistence of Salmonella cells beyond our minimum detectable differences. After eight days, only 0.1 to 11.9% of the initial S. typhimurium inocula were detected by direct counts. Suspended particles had a minimal effect on the survival and viability of S. typhimurium; the losses of total, viable, or culturable Salmonella were generally the same across particle treatments and concentrations. Silt and flocculent particles affected loss rates of total and viable S. typhimurium similarly to inorganic particles (clay). It appears unlikely that suspended particles would provide a means for S. typhimurium to persist at hazardous levels in freshwater.  相似文献   

9.
ABSTRACT: Heterotrophic, mesophilic bacteria derived from, and maintained in, a freshwater environment were subjected to three classes of herbicides. Diuron, 2,4,5-Trichlorophenoxyacetic acid, and paraquat, used as water soluble solutions, were added (0.7 and 1.4 mgA) to a laboratory culture of bacteria. Total numbers of the bacteria, representing several genera, were monitored for alteration of numbers and types. Temperature, pH, and dissolved oxygen were monitored and the culture medium was tested for residual herbicide. Alterations observed in populations were considered to result from herbicide additions. Each herbicide tested was found to affect bacterial populations differently. Reasons for observed differences are discussed. In this aquatic environment the herbicides remained qualitatively measurable for periods up to three weeks.  相似文献   

10.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

11.
ABSTRACT: As a part of a water quality survey of the Spoon River, Illinois, algal genera were identified and their densities were enumerated. Weekly samples were collected at five stations starting on June 1, 1971. This report presents the first year's results. Algal densities for each station were found to be distributed geometrically normal. Total algal densities increased as water progressed downstream. Although water temperature has been observed to be an important factor affecting the density and the composition of algae in streams, attempts to correlate algal densities with temperatures for the Spoon River were not fruitful. Correlations of algal densities with dissolved oxygen, flow, and coliform densities also could not be made. The dominant genera observed were Cyclotella, Navicula, Scenedesmus, and Euglena. On the average diatoms accounted for 87% of all algae counts. The average diversity indices varied about 1.0 to 1.5 for five stations. There did not appear to be any advantage in the use of diversity index over that of algal density and genera richness in characterizing algae in the Spoon River.  相似文献   

12.
ABSTRACT: The uptake of ten chemical elements was measured in water, sediment, fly ash, and the major biotic components of an ash basin drainage system. The biota tested represent several trophic levels observed in the settling basin and receiving swamp of the system. Concentrations were measured by neutron activation (NAA) in the major biotic groups including aquatic bacteria, algae, macrophytes, midges, dragonflies, crayfish, tadpoles, and fish. Only three elements (Cu, Zn, Cd) were more highly concentrated in water from a nearby unpolluted stream than in the fly ash effluent. Sediment concentrations of all elements were highest in the ash drainage system with Al and Fe being consistently highest. Among the biota, Hydrodictyon sp. and Lemna perpusilla had the highest concentrations of Al and Fe while other macrophytes were the major accumulators of Mn and Ba. Invertebrates generally concentrated high amounts of Cu and Zn although Cd and Hg were accumulated most by crayfish. Selenium was selectively concentrated by bacteria, crayfish (Procambarus sp.) and mosquitofish (Gambusia afflnis). Consequences of elemental concentrations in sediment and in specific trophic level groups are discussed.  相似文献   

13.
Habersack, Mathew J., Theo A. Dillaha, and Charles Hagedorn, 2011. Common Snapping Turtles (Chelydra serpentina) as a Source of Fecal Indicator Bacteria in Freshwater Systems. Journal of the American Water Resources Association (JAWRA) 47(6):1255–1260. DOI: 10.1111/j.1752‐1688.2011.00572.x Abstract: The United States Total Maximum Daily Load program is required by Section 303(d) of the Clean Water Act to clean up waters that do not meet state water quality standards. While conducting research into the bacterial composition of semiaquatic mammal feces, the opportunity presented itself to quantify commonly used pathogen indicator bacteria in the gastrointestinal contents from an ectothermic (cold‐blooded) animal, the common snapping turtle. Indicator bacteria concentrations were on the order of 106 CFU/g feces (dry weight basis). The estimated bacterial loadings from this study demonstrate that the common snapping turtle, if present in sufficient numbers, may contribute significant bacterial loadings to waterways and should be considered when developing bacterial Total Maximum Daily Loads and in other bacterial water quality assessments.  相似文献   

14.
ABSTRACT: Mean monthly runoff from ungaged drainage basins that have significant snowpacks each year can be estimated quite well by assuming that the time duration between snowfall and snowmelt is the predominant factor in temporal runoff distribution. That time span is related to basin temperatures which are, in turn, functions of basin elevation and latitude. Regional hydrologic analyses of gaged basin data create regression equations for estimating runoff distribution by month. These equations then can be applied to ungaged basins. Basin latitude and mean elevation are two independent variables that can be used in estimating monthly runoff distributions.  相似文献   

15.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

16.
In this study, we evaluated the heterotrophic microbial communities colonising stone ballasts at diesel depots. The number of bacteria (both total culturable heterotrophic bacteria and hydrocarbon-degrading bacteria) was proportional to the level of hydrocarbon contamination. However, there was no significant difference in the level of total culturable heterotrophs (TCHs) and the hydrocarbon degrading bacteria. Addition of nutrients to the ballast stimulated the biological activity and possibly the removal of hydrocarbons. However, this was only evident in the highly contaminated stone ballasts samples. The biological activity was evaluated using CO2 production. The production of CO2 was higher in nutrient amended treatments in which high numbers of TCHs were present. Characterisation of heterotrophic communities using Biolog revealed differences in the microbial metabolic profiles for the different sites. The results suggest that the heterotrophic microbial communities at different diesel depots are different.  相似文献   

17.
In order to investigate snowpack sensitivity to temperature increases and end‐member atmospheric moisture conditions, we applied a well‐constrained energy‐ and mass‐balance snow model across the full elevation range of seasonal snowpack using forcing data from recent wet and dry years. Humidity scenarios examined were constant relative humidity (high) and constant vapor pressure between storms (low). With minimum calibration, model results captured the observed magnitude and timing of snowmelt. April 1 snow water equivalent (SWE) losses of 38%, 73%, and 90% with temperature increases of 2, 4, and 6°C in a dry year centered on areas of greatest SWE accumulation. Each 2°C increment of warming also resulted in seasonal snowline moving upslope by 300 m. The zone of maximum melt was compressed upward 100–500 m with 6°C warming, with the range reflecting differences in basin hypsometry. Melt contribution by elevations below 2,000 m disappeared with 4°C warming. The constant‐relative‐humidity scenario resulted in 0–100 mm less snowpack in late spring vs. the constant‐vapor‐pressure scenario in a wet year, a difference driven by increased thermal radiation (+1.2 W/m2) and turbulent energy fluxes (+1.2 W/m2) to the snowpack for the constant‐relative‐humidity case. Loss of snowpack storage and potential increases in forest evapotranspiration due to warming will result in a substantial shift in forest water balance and present major challenges to land management in this mountainous region.  相似文献   

18.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   

19.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

20.
ABSTRACT: Long term effects of precipitation and land use/land cover on basin outflow and nonpoint source (NFS) pollutant flux are presented for up to 24 years for a rapidly developing headwater basin and three adjacent headwater basins on the urban fringe of Washington, D.C. Regression models are developed to describe the annual and seasonal responses of basin outflow and IMPS pollutant flux to precipitation, mean impervious surface (IS), and land use. To quantify annual change in mean IS, a variable called delta IS is created as a temporal indicator of urban soil disturbance. Hydrologic models indicate that total annual surface outflow is significantly associated with precipitation and mean IS (r2= 0.65). Seasonal hydrologic models reveal that basin outflow is positively associated with IS during the summer and fall growing season (June to November). NPS pollutant flux models indicate that total and storm total suspended solids (TSS) flux are significantly associated with precipitation and urban soil disturbance in all seasons. Annual NPS total nitrogen flux is significantly associated with both urban and agricultural soil disturbance (r2= 0.51). Seasonal models of phosphorus flux indicate a significant association of total phosphorus flux with urban soil disturbance during the growing season. Total soluble phosphorus (TSP) flux is significantly associated with IS (r2= 0.34) and urban and agricultural soil disturbance (r2= 0.58). In urbanizing Cub Run basin, annual TSP concentrations are significantly associated with IS and cultivated agriculture (r2= 0.51).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号