首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat loss, trophic collapse, and the decline of ecosystem services   总被引:8,自引:0,他引:8  
The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.  相似文献   

2.
Urban metabolism research faces difficulties defining ecological trophic levels and analyzing relationships among the metabolic system's energy components. Here, we propose a new way to perform such research. By integrating throughflow analysis with ecological network utility analysis, we used network flows to analyze the metabolic system's network structure and the ecological relationships within the system. We developed an ecological network model for the system, and used four Chinese cities as examples of how this approach provides insights into the flows within the system at both high and low levels of detail. Using the weight distribution in the network flow matrix, we determined the structure of the urban energy metabolic system and the trophic levels; using the sign distribution in the network utility matrix, we determined the relationships between each pair of the system's compartments and their degrees of mutualism. The model uses compartments based on 17 sectors (energy exploitation; coal-fired power; heat supply; washed coal; coking; oil refinery; gas generation; coal products; agricultural; industrial; construction; communication, storage, and postal service; wholesale, retail, accommodation, and catering; household; other consuming; recovery; and energy stocks). Analyzing the structure and functioning of the urban energy metabolic system revealed ways to optimize its structure by adjusting the relationships among compartments, thereby demonstrating how ecological network analysis can be used in future urban system research.  相似文献   

3.
The number of energy transformation levels in trophic webs is usually below five, but can be extended up to ten when parasites and hyper-parasites are included. Research on the structure and function of food webs is relevant to the complexity–stability–productivity debate. The aim of this theoretical analysis is to link energetic and connectional aspects of ecosystems with information theory. Updating an energetic model reported by Ricklefs [Ecologia, Zanichelli Editore S.p.A., Bologna, Italy, 1993, p. 896], our approach is integrated with a static analysis of food webs. The length of food webs is theoretically associated with the average ecological efficiency which can be empirically correlated with the effective connectance between species. Furthermore, the advantage of greater complexity when applied to a signalling network is qualitatively addressed.The overall efficiency of energy transformation into biomass throughout a trophic web, in an ecosystem with a given number of species, is the resultant of the various ecological efficiencies, η, at the transitions between the trophic levels. However, we propose that an increment in effective connectance and interspecies connectivity based on a superimposed signalling web may increase the η values, despite the fact that signalling per se has an energetic cost. According to this hypothesis, ecosystem stability would not be necessarily reduced by increasing the number of trophic levels, N, whenever stability in terms of persistence is improved by a cost-efficient regulatory network.  相似文献   

4.
Effects of logging on species composition in tropical rainforests are well known but may fail to reveal key changes in species interactions. We used nitrogen stable‐isotope analysis of 73 species of understory birds to quantify trophic responses to repeated intensive logging of rainforest in northern Borneo and to test 4 hypotheses: logging has significant effects on trophic positions and trophic‐niche widths of species, and the persistence of species in degraded forest is related to their trophic positions and trophic‐niche widths in primary forest. Species fed from higher up the food chain and had narrower trophic‐niche widths in degraded forest. Species with narrow trophic‐niche widths in primary forest were less likely to persist after logging, a result that indicates a higher vulnerability of dietary specialists to local extinction following habitat disturbance. Persistence of species in degraded forest was not related to a species’ trophic position. These results indicate changes in trophic organization that were not apparent from changes in species composition and highlight the importance of focusing on trophic flexibility over the prevailing emphasis on membership of static feeding guilds. Our results thus support the notion that alterations to trophic organization and interactions within tropical forests may be a pervasive and functionally important hidden effect of forest degradation. Flexibilidad Trófica y la Persistencia de Aves de Sotobosque en un Bosque Lluvioso Talado Intensivamente  相似文献   

5.
We built a trophic network based on a matrix of interspecific trophic relationships to assess the role of elasmobranch fishes in shaping community structure of the Gulf of Tortugas in the Colombian Pacific Ocean. We analyzed diet similarities to define trophic components (nodes) - rather than taxonomical groups - in the network. We evaluated the ecological function of species or trophic entities through topological analysis of their structural importance in trophic networks by applying one local and several mesoscale network indices. We found that top predatory elasmobranchs play an important ecological role in top-down control and in propagating indirect effects through the system owing to high values of the node degree, centrality and topological importance indices. However, invertebrates and teleost fishes had higher connectivity and topological importance than other elasmobranchs in the network before and after removal of top predators from the system. Results from our study thus suggest that elasmobranchs at intermediate trophic levels - commonly referred to as “mesopredators” - are not so important in all complex coastal ecosystems as previously reported.  相似文献   

6.
Spatial distribution of nutrient and phytoplankton variables is often illustrated using categorical mapping for each variable. However, the assessment of eutrophication cannot be derived from a single parameter since a synthesis of the environmental variables related to eutrophication is required. These shortcomings are further complicated since it is difficult to discriminate between distinct trophic states along natural environmental gradients. In the present work, a methodological procedure for quantitative assessment of eutrophication at a spatial scale was examined in the Gulf of Saronicos, Greece, based on a thematic map generated from the synthesis of four variables characterising eutrophication. The categorical map of each variable was developed using the Kriging interpolation method and four trophic levels were indicated (eutrophic, upper-mesotrophic, lower-mesotrophic and oligotrophic) based on nutrient and phytoplankton concentration scaling. Multi-criteria choice methods were applied to generate a final categorical map showing the four trophic levels in the area. This synthesis of categorical maps for assessing eutrophication at a spatial scale is proposed as a methodological procedure appropriate for coastal management studies.  相似文献   

7.
The coastal ecosystem of the Pearl River Estuary (PRE) has been overfished and received a high level of combined pollution since the 1980s. Ecopath with Ecosim was used to construct two ecosystem models (for 1981 and 1998) to characterize the food web structure and functioning of the ecosystem. Pedigree work and simple sensitivity analysis were carried out to evaluate the quality of data and the uncertainty of the models. The two models seem reliable with regards to input data of good quality. Comparing the variations of outputs of these two models aimed to facilitate assessment of changes of the ecosystem during the past two decades.The trophic structure of the ecosystem has changed with an increase in the biomass proportion of lower trophic level (TL) organisms and a decrease in top predator biomass proportion. All the indices of ecosystem maturity examined show that the system was in a more mature condition in 1981 than in 1998, although the system has been in a condition of stress due to anthropogenic disturbances, such as environmental pollution and habitat destruction since 1981. The ecosystem was aggregated into six and seven integral TLs in 1981 and 1998, respectively, using the trophic aggregation routine of Ecopath. Most of the total system biomass and catch took place at TL II and III in both years. But the distribution of the total system biomass and catch at different TLs changed with decreasing proportions in higher TLs in 1998. The mean transfer efficiency was 9.1% and 10.2% in 1981 and 1998, respectively.Comparative network analysis allowed quantification of the importance of direct and indirect trophic interactions among functional groups. Moreover, a method derived from the mixed trophic impact (MTI) analysis allowed estimating importance of groups in terms of “keystoneness” and identifying the keystone species in the two models over the past two decades. The results indicate that there were no clear keystone species in 1998 but two keystone species at medium trophic levels were identified in 1981. Moreover, organisms located at low trophic levels such as phytoplankton, zooplankton and benthic invertebrates were identified to have relatively high keystoneness in the ecosystem.  相似文献   

8.
Daniel A. Fiscus   《Ecological modelling》2009,220(22):3070-3132
A preliminary study in comparative ecological network analysis was conducted to identify key assumptions and methodological challenges, test initial hypotheses and explore systemic and network structural characteristics for environmentally sustainable ecosystems. A nitrogen network for the U.S. beef supply chain – a small sub-network of the industrial food system analyzed as a pilot study – was constructed and compared to four non-human carbon and nitrogen trophic networks for the Chesapeake Bay and the Florida Everglades. These non-human food webs served as sustainable reference systems. Contrary to the main original hypothesis, the “window of vitality” and the number of network roles did not clearly differentiate between a human sub-network and the more complete non-human networks. The effective trophic level of humans (a partial estimate of trophic level based on the single food source of beef) was much higher (8.1) than any non-human species (maximum of 4.88). Network connectance, entropy, total dependency coefficients, trophic efficiencies and the ascendency to capacity ratio also indicated differences that serve as hypotheses for future tests on more comprehensive human food webs. The study elucidated important issues related to (1) the steady state assumption, which is more problematic for industrial human systems, (2) the absence or dearth of data on contributions of dead humans and human wastes to feed other species in an integrated food web, (3) the ambiguity of defining some industrial compartments as living versus non-living, and (4) challenges with constructing compartments and trophic transfers in industrial versus non-human food webs. The two main novel results are (1) the progress made toward adapting ecological network analysis (ENA) methodology for analysis of human food networks in industrial cultures and (2) characterizing the critical aspects of comparative ENA for understanding potential causes of the problems, and providing avenues for solutions, for environmental sustainability. Based on this work, construction and comparative network analysis of a more comprehensive industrial human food network seems warranted and likely to provide valuable insights for modifying structures of industrial food networks to be more like natural networks and more sustainable.  相似文献   

9.
We investigated the effects of body size, feeding strategy and depth distribution on the trophic resource partitioning among the 26 dominant fish consumers in a fish assemblage on the central Mediterranean shelf-break. The fish assemblage was structured in two major trophic guilds: epibenthic and zooplanktonic feeders, according to the position of each predator along the benthos–plankton gradient. Within each main guild, the species were segregated along a prey-size or fish-size gradient into five further guilds. Fish size and prey size were strongly correlated, indicating that the prey-size niche can be well explained by predator size. Fish consumers showed a significant negative correlation between the similarity in prey type and the similarity in depth distribution; most species with similar trophic preferences segregated along the depth dimension. The only predators overlapping in both food and depth preferences were those with a more specialist trophic behavior. These results suggest that fish body size and depth preferences are the two main niche dimensions, explaining a large part of the coexistence between the Mediterranean shelf-break fish consumers.  相似文献   

10.
邻苯二甲酸酯类(PAEs)增塑剂被普遍用于塑料制品中,在大气、水等环境中广泛存在,其潜在危害受到关注。水环境中的PAEs,从藻类等初级生产者吸收,到浮游动物、游泳动物等通过鳃和皮肤直接接触或捕食摄取,在水生生物之间转化和传递。笔者总结了PAEs在水生食物链中不同营养级生物体的含量,分析了PAEs在食物链中富集和转化的影响因素(辛醇-水分配系数Kow、代谢转化、生长阶段等)。目前的研究表明PAEs可能在食物链中传递,最终在较高营养级生物体中富集。同时总结了5种PAEs(邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酯丁苄酯、邻苯二甲酸二(2-乙基)己酯和邻苯二甲酸二甲酯)对水生生物的毒性效应的研究进展,已有研究表明PAEs对藻类的细胞器和抗氧化体系,对鱼类的生殖系统、内分泌系统和抗氧化体系都有一定程度损伤。PAEs在食物链中传递和富集现象的存在会对高营养级水生生物产生潜在危害。针对目前PAEs在食物链中传递的研究数量较少、结构简单等问题,对未来研究方向做了简要分析和展望。  相似文献   

11.
Berger KM  Gese EM  Berger J 《Ecology》2008,89(3):818-828
The traditional trophic cascades model is based on consumer resource interactions at each link in a food chain. However, trophic-level interactions, such as mesocarnivore release resulting from intraguild predation, may also be important mediators of cascades. From September 2001 to August 2004, we used spatial and seasonal heterogeneity in wolf distribution and abundance in the southern Greater Yellowstone Ecosystem to evaluate whether mesopredator release of coyotes (Canis latrans), resulting from the extirpation of wolves (Canis lupus), accounts for high rates of coyote predation on pronghorn (Antilocapra americana) fawns observed in some areas. Results of this ecological perturbation in wolf densities, coyote densities, and pronghorn neonatal survival at wolf-free and wolf-abundant sites support the existence of a species-level trophic cascade. That wolves precipitated a trophic cascade was evidenced by fawn survival rates that were four-fold higher at sites used by wolves. A negative correlation between coyote and wolf densities supports the hypothesis that interspecific interactions between the two species facilitated the difference in fawn survival. Whereas densities of resident coyotes were similar between wolf-free and wolf-abundant sites, the abundance of transient coyotes was significantly lower in areas used by wolves. Thus, differential effects of wolves on solitary coyotes may be an important mechanism by which wolves limit coyote densities. Our results support the hypothesis that mesopredator release of coyotes contributes to high rates of coyote predation on pronghorn fawns, and demonstrate the importance of alternative food web pathways in structuring the dynamics of terrestrial systems.  相似文献   

12.
A network model of trophic interactions in a tropical reservoir in India was developed with the objective to quantify matter and energy flows between system components and to study the impact of invasive fishes on the ecosystem. Structure of flows and their distribution within and between trophic levels were analysed by aggregating single flows into combined flows for discrete trophic levels. The trophic flows primarily occurred in the first four trophic level (TL) and the food web structure in this reservoir ecosystem was characterized by the dominance of low TL organisms, with the highest TL of only 3.57 for the top predator. Highest system omnivory index (SOI) was observed for indigenous catfishes (0.422), followed by the exotic fish Mozambique Tilapia (0.402). Nile Tilapia and Pearl spots show the highest niche overlap which suggests high competition for similar resources. The mixed trophic impact routine reveals that an increase in the abundance of the African catfish would negatively impact almost all fish groups such as Indian major carps, Pearl spots, indigenous catfishes and Tilapines. The other invasive fish Mozambique Tilapia adversely affects the indigenous catfishes. The most interesting observation in this study is that the most dominant invasive fish in this reservoir, the Nile Tilapia does not negatively impact any of the fish groups. In fact it positively impacts the Indian major carps. The direct and indirect effects of predation between system components (i.e. fish, invertebrates, phytoplankton and detritus) are quantitatively described and the possible influence and role in the ecosystem's functioning of the invasive fish species are discussed.  相似文献   

13.
Matassa CM  Trussell GC 《Ecology》2011,92(12):2258-2266
Predators can initiate trophic cascades by consuming and/or scaring their prey. Although both forms of predator effect can increase the overall abundance of prey's resources, nonconsumptive effects may be more important to the spatial and temporal distribution of resources because predation risk often determines where and when prey choose to forage. Our experiment characterized temporal and spatial variation in the strength of consumptive and nonconsumptive predator effects in a rocky intertidal food chain consisting of the predatory green crab (Carcinus maenas), an intermediate consumer (the dogwhelk, Nucella lapillus), and barnacles (Semibalanus balanoides) as a resource. We tracked the survival of individual barnacles through time to map the strength of predator effects in experimental communities. These maps revealed striking spatiotemporal patterns in Nucella foraging behavior in response to each predator effect. However, only the nonconsumptive effect of green crabs produced strong spatial patterns in barnacle survivorship. Predation risk may play a pivotal role in determining the small-scale distribution patterns of this important rocky intertidal foundation species. We suggest that the effects of predation risk on individual foraging behavior may scale up to shape community structure and dynamics at a landscape level.  相似文献   

14.
The John Heinz National Wildlife Refuge (NWR) at Tinicum Marsh contains one of the last remaining tidal freshwater marsh communities along the Pennsylvania side of the Delaware River Estuary. The marsh receives a significant load of nutrients and sediment-associated contaminants and is hypothesised to act as an effective trap for these chemicals. The goal of this study was to quantify the levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) at various trophic levels at two sites within Tinicum Marsh and assess the factors important in determining their bioaccumulation and trophic transfer. For both PCBs and PBDEs, lipid variation for all species was a large factor in determining contaminant body burden. Also, concentrations in biota increased with increasing trophic level as determined by nitrogen isotope analysis (δ15N values) at the downstream site within Tinicum Marsh. This trend was less apparent at the upstream site and may be due to differences in feeding behaviours among species between the two sites and/or differences in carbon and nitrogen sources and recycling. These data are valuable in assisting bioaccumulation/trophic transfer studies and serve as benchmarks to which future PCB and PBDE concentrations will be compared.  相似文献   

15.
Cetaceans are top-level predators that serve as sentinels of the health and status of lower trophic levels in the marine ecosystem. For this reason they attract significant attention in marine conservation planning and often have been used to promote designation of reserve areas in many countries (e.g., Ligurian Sea, Moray Firth, Hawaiian Islands, The Gully, Wadden Sea, Banks Peninsula, and Golfo San José). Many policies are designed to protect cetaceans. For example, the Habitat Directive requires member states to select, designate, and protect sites that support certain natural habitats or species, such as the bottlenose dolphin, as Special Areas of Conservation (SACs) that aim to create a network of protected areas across the European Union known as Natura 2000. The boundaries of protected areas for cetacean species must be defined for management purposes. In recent years, many techniques have been developed to define the distribution of cetaceans in relation to habitat preferences. Although these models can provide an understanding of the ecological processes that determine species distribution, their application requires prior knowledge of the variables that should be included in the model, the interactions among these variables, and their effects on species distribution. Thus, the lack of available data in understudied areas precludes the application of these types of models. As an alternative, we describe a geostatistical approach to identifying areas that potentially should be designated as marine protected areas for cetaceans. We illustrate the application of the kriging algorithm to the bottlenose dolphin population that resides in the northwestern Mediterranean Sea. The data derived from a 7-year survey were used. The encounter rate is the only variable required for this method, making it very easy to apply. The resulting georeferenced and high resolution map includes areas most visited by bottlenose dolphins, which are called core areas. Core areas are helpful for establishing the boundaries of marine reserves for the protection of the species. The approach described herein is accurate, precise, unbiased, replicable to all highly mobile species and easy to understand by both researchers and policy makers.  相似文献   

16.
It is a current challenge to better understand the relative importance of species in ecosystems, and the network perspective is able to offer quantitative tools for this. It is plausible to assume, in general, that well-linked species, being key interactors, are also more important for the community. Recently a number of methods have been suggested for quantifying the network position of species in ecological networks (like the topological importance metric, TI). Most of them are based on node centrality indices and it may happen that the two most important species in a food web have very similar interaction structure and they can essentially replace each other if one becomes extinct. For conservation considerations it is a challenge to identify species that are richly connected and, at the same time, have a relatively unique and irreplaceable interaction pattern. We present a new method and illustrate our approach by using the Kuosheng Bay trophic network in Taiwan. The new method is based on the interaction matrix, where the strength of the interaction between nodes i and j depends only on topology. By defining a threshold separating weak and strong interactors, we define the effective range of interactions for each graph node. If the overlaps between pairs of these ranges are quantified, we gain a metric expressing how unique is the interaction pattern of a focal node (TO). The combination of centrality (TI) and uniqueness (TO) is called topological functionality (TF). We compare the nodal importance rank provided by this metric to others based on a variety of centrality measures. The main conclusion is that shrimps seem to have the most unique interaction pattern despite that their structural importance has been underestimated by all conventional centrality indices. Also, our network analysis suggests that fisheries disturb the ecosystem in a more critical network position than the impingement by the local power plant.  相似文献   

17.
C. Roger 《Marine Biology》1975,32(4):365-378
The nature of the food (animal, plant or mixed) and the fullness of the stomachs at different times of the day have been studied through dissection of 18620 specimens representative of almost all the euphausiid species of the Central and Western Tropical Pacific Ocean. Animal food predominates in 22 of the 28 species studied, while 12 can be considered as omnivorous; only 4 are mainly phytophagous. The trophic level of a given species is more or less the same in different zones, but scarcity of phytoplankton in oligotrophic tropical regions results in an increase of the trophic level of herbivorous and omnivorous species. There is no correlation between trophic level and vertical distribution of a species. Each species follows a clearly defined feeding rhythm, usually characteristic for each genus: nutrition most active by night in Euphausia, continuous in Thysanopoda, restricted to light hours in Stylocheiron, mainly from noon to midnight in Nematoscelis and Nematobrachion. As a rule, it is obvious that the smaller the daily vertical migration, the more pronounced the feeding rhythm: the range of fluctuations in fullness of stomachs over 24 h is weak or non-existent in migrating species, maximum in non-migrating ones. Nevertheless, daily vertical migration does not appear to be “advantageous” from the point of view of trophic efficiency: assuming that the stomachal transit is the same for all species (a speculative proposition), it is shown that the ratio “total biomass of species: food consumed during 24 h”, i.e., “biomass permanently available for the upper link: biomass eaten daily at the expense of the lower link” is 4 times higher in non-migrating than in migrating species. It is thus considered that daily vertical migration is an expensive manner to transfer energy from link to link, and therefore fulfills other functions, amongst which diffusion throughout the whole water column of the biomass produced in the upper levels is probably one of the most important.  相似文献   

18.
C. Roger 《Marine Biology》1973,18(4):312-316
Trophic relationships are the determining factor of biological equilibrium, as existence and abundance of any population depend on the ratio nutrition-predation. This paper is the first of a series devoted to the study of the trophic position of euphausiid crustaceans in the equatorial and south-tropical Pacific Ocean; it defines the role of a pelagic group in its biotope, suggests methods in trophic studies, and shows that analytical research on limited subjects is a reliable way to reveal more general features applying to the whole pelagic world. Until now, the literature dealing with nutrition of euphausiids in most cases has provided only qualitative lists of items found in the stomachs; the drawbacks of this kind of investigation are that only a small part of the stomach content is recognizable in this way and, moreover, that the remains identified belong only to the food consumed which had the most resistant structures. In order to study the trophic levels of species, it has been necessary to take into account the whole stomach content, to establish if its origin was plant or animal or both. Binocular examination of the dissected stomachs made it possible to discriminate between phyto- and zooplankton. More than 5000 specimens have been examined in this way, each stomach being named V if more than 80% of its content is phytoplankton, A if this same percentage is animal food, VA if phyto- and zooplankton are of comparable importance; the trophic level of each species has been defined as the percentage Σ [A+(VA/2)], which measures the part of animal material among the total food. Although zooplankton appears on the whole to be more important than phytoplankton as food for tropical euphasiids, all the trophic levels are observed among the 16 species studied, from phytophagous to strictly carnivorous.  相似文献   

19.
The objective of this study was to describe the trophic structure and energy flow in a lentic ecosystem in South Korea. Physicochemical water conditions were evaluated along with the reservoir ecosystem health using a multimetric IBI model. Nutrient analyses of the reservoir showed a nutrient rich and hypereutrophic system. Guild analysis revealed that tolerant and omnivorous species dominated the ecosystem. Tolerant fish, as a proportion of the number of individuals, were associated (R2 > 0.90, p < 0.01) with TN and TP, the key indicators of trophic state in lentic ecosystems. The mean Reservoir Ecosystem Health Assessment (REHA) score was 19.3 during the study, which was judged as in ‘fair to poor’ condition. A trophic analysis of the reservoir estimated by the ECOPATH model shows that most activity in terms of energy flow occurred in the lower part of the trophic web, where there was intensive use of primary producers as a food source. Consequently, of the 10 consumer groups, nine fell within trophic levels <2.8. Trophic levels (TL) estimated from the weighted average of prey trophic levels varied from 1.0 for phytoplankton, macrophytes, and detritus to 3.25 for the top predator, Pseudobagrus fulvidraco. Our integrated approach to trophic network analysis may provide a key tool for determining the effects of nutrient influx on energy flow pathways in lentic ecosystems.  相似文献   

20.
Individual specialisation is increasingly recognised to be an ecological and evolutionary process having important consequences for population dynamics of vertebrates. The South American fur seal (SAFS) and the South American sea lion (SASL) are two otariid species with similar ecology that coexist in sympatry in the Uruguayan coast. These two species have contrasting trends and widely different population sizes. The underlying reasons for these population trends, unique in their geographical ranges, remain unknown. We studied the foraging ecology of these otariid species over 2 years at the individual- and population levels using the isotopic ratios (δ13C–δ15N) in whiskers of both sexes. We compared the isotope ratios between species and sexes and used several metrics to characterise the degree of overlap and distinctiveness in the use of isotopic niche space at the individual- and population levels. Interspecific trophic niche overlap was minimal, thus ruling out interspecific competition as the cause for the contrasting population trends of both species. At the intraspecific level, both species had sexual segregation in their foraging areas, but each species had a large overlap in the isotopic niches between sexes. While SAFS had a wider niche and generalist individuals, SASL had the narrower niche with a higher degree of individual specialisation. Behavioural constraints during the breeding season, intraspecific competition and a major dependence on resources of the Uruguayan coastal shelf may explain why SASL had a higher trophic individual specialisation and a larger vulnerability in a heavily exploited habitat by fisheries and, by consequence, a locally declining population trend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号