首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strong fluctuating component in the measured concentration time series of a dispersing gaseous pollutant in the atmospheric boundary layer, and the hazard level associated to short-term concentration levels, demonstrate the necessity of calculating the magnitude of turbulent fluctuations of concentration using computational simulation models. Moreover the computation of concentration fluctuations in cases of dispersion in realistic situations, such as built-up areas or street canyons, is of special practical interest for hazard assessment purposes. In this paper, the formulation and evaluation of a model for concentration fluctuations, based on a transport equation, are presented. The model is applicable in cases of complex geometry. It is included in the framework of a computational code, developed for simulating the dispersion of buoyant pollutants over complex geometries. The experimental data used for the model evaluation concerned the dispersion of a passive gas in a street canyon between 4 identical rectangular buildings performed in a wind tunnel. The experimental concentration fluctuations data have been derived from measured high frequency concentrations. The concentration fluctuations model is evaluated by comparing the model's predictions with the observations in the form of scatter plots, quantile-quantile plots, contour plots and statistical indices as the fractional bias, the geometrical mean variance and the factor-of-two percentage. From the above comparisons it is concluded that the overall model performance in the present complex geometry case is satisfactory. The discrepancies between model predictions and observations are attributed to inaccuracies in prescribing the actual wind tunnel boundary conditions to the computational code.  相似文献   

2.
The best-fit equations of linear and non-linear forms of the two widely used kinetic models, namely pseudo-first-order and pseudo-second-order equations, were compared in this study. The experimental kinetics of methylene blue adsorption on activated carbon was used for this research. Both the correlation coefficient (R 2) and the normalized standard deviation Δq(%) were employed as error analysis methods to determine the best-fitting equations. The results show that the non-linear forms of pseudo-first-order and pseudo-second-order models were more suitable than the linear forms for fitting the experimental data. The experimental kinetics may have been distorted by linearization of the linear kinetic equations, and thus, the non-linear forms of kinetic equations should be primarily used to obtain the adsorption parameters. In addition, the Δq(%) method for error analysis may be better to determine the best-fitting model in this case.  相似文献   

3.
Testing the Accuracy of Population Viability Analysis   总被引:3,自引:0,他引:3  
  相似文献   

4.
This paper deals with a two-dimensional numerical model based on the smoothed particle hydrodynamics (SPH) technique for the evaluation of the concentration field of pollutants in water. A SPH model is formulated to solve the fickian diffusion equation applied to pollutants with the same density as the water. A lagrangian SPH formalism of the advective diffusion equation is also developed for pollutant-water, taking into account the effects of molecular diffusion and natural advection induced by differences between the fluid densities. These equations are coupled with the fluid mechanics equations. Attention is paid to the numerical aspects involved in the solution procedure and to the optimization of the model parameters. Environmental engineering problems concerning diffusion and natural advection phenomena occur in the presence of a pollutant in still water. Numerical tests referring to a strip and a bubble of contaminant in a water tank with different initial concentration laws have been carried out. The results obtained by the proposed SPH models are compared with other available SPH formulations, showing an overall better agreement with standard analytical solutions in terms of spatial evolution of the concentration values. Capabilities and limits of the proposed SPH models to simulate advective diffusion phenomena for a wide range of density ratios are discussed.  相似文献   

5.
Inverse parameter estimation of individual-based models (IBMs) is a research area which is still in its infancy, in a context where conventional statistical methods are not well suited to confront this type of models with data. In this paper, we propose an original evolutionary algorithm which is designed for the calibration of complex IBMs, i.e. characterized by high stochasticity, parameter uncertainty and numerous non-linear interactions between parameters and model output. Our algorithm corresponds to a variant of the population-based incremental learning (PBIL) genetic algorithm, with a specific “optimal individual” operator. The method is presented in detail and applied to the individual-based model OSMOSE. The performance of the algorithm is evaluated and estimated parameters are compared with an independent manual calibration. The results show that automated and convergent methods for inverse parameter estimation are a significant improvement to existing ad hoc methods for the calibration of IBMs.  相似文献   

6.
The Reynolds transport theorem (RTT) from mathematics and engineering has a rich history of success in mass transport dynamics and traditional thermodynamics. This paper introduces RTT as a complementary approach to traditional compartmental methods used in ecological modeling and network analysis. A universal system equation for a generic flow quantity is developed into a generic open-system differential expression for conservation of energy. Nonadiabatic systems are defined and incorporated into control volume (CV) and control surface (CS) perspectives of RTT where reductive assumptions in empirical data are then formally introduced, reviewed, and appropriately implemented. Compartment models are abstract, time-dependent systems of simultaneous differential equations describing storage and flow of conservative quantities between interconnected entities (the compartments). As such, they represent a set of flexible and somewhat informal, assumptions, definitions, algebraic manipulations, and graphical depictions subject to influence and selectively parsed expression by the modeler. In comparison, RTT compartment models are more rigorous and formal integro-differential equations and graphics initiated by the RTT universal system equation, forcing an ordered identification of simplifying assumptions, ending with clearly identified depictions of the transfer and transport of conservative substances in physical space and time. They are less abstract in the rigor of their equation development leaving less ambiguity to modeler discretion. They achieve greater consistency with other RTT compartment style models while possibly generating greater conformity with physical reality. Characteristics of the RTT approach are compared with those of a traditional compartment model of energy flow in an intertidal oyster-reef community.  相似文献   

7.
Tracer transport in complex systems like turbulent flows or heterogeneous porous media is now more and more regarded as a non-local process that can hardly be represented by second-order diffusion models. In this work, we consider diffusion models that assume that tracer particles follow a heavy-tail Lévy distribution, which allows for large displacements. We show that such an assumption leads to a fractional-order diffusion operator in the governing equation for tracer concentration. A comparison of three Eulerian numerical methods to discretize that equation is then performed. These consist of the finite difference, finite element and spectral element methods. We suggest that non-local methods, like the spectral element method, are better suited to transport models with fractional-order diffusion operators.  相似文献   

8.
A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows that the model predicted maps are more accurate than the maps based solely on the Eta-CMAQ forecast data for a 2 week test period. These out-of sample spatial predictions and temporal forecasts also outperform those from regression models with independent Gaussian errors. The method is fully Bayesian and is able to instantly update the map for the current hour (upon receiving monitor data for the current hour) and forecast the map for several hours ahead. In particular, the 8 h average map which is the average of the past 4 h, current hour and 3 h ahead is instantly obtained at the current hour. Based on our validation, the exact Bayesian method is preferable to more complex models in a real-time updating and forecasting environment.  相似文献   

9.
Rapidly varied open channel flows are characterized by curvilinear streamlines, thereby resulting in a pressure field different from the hydrostatic approach proposed in the standard gradually varied flow theory. This problem is related to environmental hydraulic problems such as the undular hydraulic jump and flow over round-crested weirs, for which streamline curvature effects are significant. The inclusion of the curvilinear streamline effect in an extended energy equation was firstly by Fawer. Most of the extended energy equations currently employed are therefore modified forms of the original Fawer approach. The aim of the present study is to highlight and remind engineers of the outstanding theory presented by Fawer. Herein, his approach for steady open channel flow with curved streamlines is revised and compared with experimental observations. Computational methods are presented in detail and based on present results, it can be observed that more recent and complex models for these problems are similar to the original proposal of Fawer, and hardly more accurate in some instances. Based on the proposed study an useful framework for theoretical models for steady open channel flows with curved streamlines is proposed.  相似文献   

10.
《Ecological modelling》2005,186(3):280-289
Increasing use is being made in conservation management of statistical models that couple extensive collections of species and environmental data to make predictions of the geographic distributions of species. While the relationships fitted between a species and its environment are relatively transparent for many of these modeling techniques, others are more ‘black box’ in character, only producing geographic predictions and providing minimal or untraditional summaries of the fitted relationships on which these predictions are based. This in turn prevents robust evaluation of the ecological sensibility of such models, a necessary process if model predictions are to be treated with confidence. Here we propose a new but simple method for visualizing modeled responses that can be implemented with any modeling method, and demonstrate its application using five common methods applied to the prediction of an Australian tree species. This is achieved by insetting an “evaluation strip” into the spatial data layers, which, after predictions have been made, can be clipped out and used for creating plots of the modelled responses. We present findings of the application strip for algorithms GLMs, GAMs, CLIM, DOMAIN and MARS. Evaluation strips can be constructed to investigate either uni-variate responses, or the simultaneous variation in predicted values in relation to two variables. The latter option is particularly useful for evaluating responses in models that allow the fitting of complex interaction terms.  相似文献   

11.
《Ecological modelling》2007,200(1-2):1-19
Given the importance of knowledge of species distribution for conservation and climate change management, continuous and progressive evaluation of the statistical models predicting species distributions is necessary. Current models are evaluated in terms of ecological theory used, the data model accepted and the statistical methods applied. Focus is restricted to Generalised Linear Models (GLM) and Generalised Additive Models (GAM). Certain currently unused regression methods are reviewed for their possible application to species modelling.A review of recent papers suggests that ecological theory is rarely explicitly considered. Current theory and results support species responses to environmental variables to be unimodal and often skewed though process-based theory is often lacking. Many studies fail to test for unimodal or skewed responses and straight-line relationships are often fitted without justification.Data resolution (size of sampling unit) determines the nature of the environmental niche models that can be fitted. A synthesis of differing ecophysiological ideas and the use of biophysical processes models could improve the selection of predictor variables. A better conceptual framework is needed for selecting variables.Comparison of statistical methods is difficult. Predictive success is insufficient and a test of ecological realism is also needed. Evaluation of methods needs artificial data, as there is no knowledge about the true relationships between variables for field data. However, use of artificial data is limited by lack of comprehensive theory.Three potentially new methods are reviewed. Quantile regression (QR) has potential and a strong theoretical justification in Liebig's law of the minimum. Structural equation modelling (SEM) has an appealing conceptual framework for testing causality but has problems with curvilinear relationships. Geographically weighted regression (GWR) intended to examine spatial non-stationarity of ecological processes requires further evaluation before being used.Synthesis and applications: explicit theory needs to be incorporated into species response models used in conservation. For example, testing for unimodal skewed responses should be a routine procedure. Clear statements of the ecological theory used, the nature of the data model and sufficient details of the statistical method are needed for current models to be evaluated. New statistical methods need to be evaluated for compatibility with ecological theory before use in applied ecology. Some recent work with artificial data suggests the combination of ecological knowledge and statistical skill is more important than the precise statistical method used. The potential exists for a synthesis of current species modelling approaches based on their differing ecological insights not their methodology.  相似文献   

12.
Foot-and-mouth disease (FMD) is a highly contagious viral infection of cattle, sheep, goats and pigs, with complex epidemiological interactions. State-transition simulation models have traditionally catered for complex modelling, yielding detailed representations that are well suited as predictive scenarios. However, results of serological investigations show a variance in antibody levels between segregated age groups on managed farms, and this has further complicated an intraherd model to the extent that a state-transition technique would become cumbersome. Moreover, the distinction between the acute and milder forms of the disease adds three more states to a conventional SIR framework, creating an APRISM model. Consequently a vector-transition technique has been employed. Vector-transition combines daily changes (in both the viral output of infected animals and the antibody titres of susceptibles) with the transition of herd animals between disease states. This means that the probability and herd matrices used in the state-transition approach are no longer required; the model is thus simplified and the processing load reduced. Vector-transition has direct applicability to FMD but could also be used to model similar micropopulation diseases.  相似文献   

13.
Stow CA  Reckhow KH  Qian SS 《Ecology》2006,87(6):1472-1477
Ecological data analysis often involves fitting linear or nonlinear equations to data after transforming either the response variable, the right side of the equation, or both, so that the standard suite of regression assumptions are more closely met. However, inference is usually done in the natural metric and it is well known that retransforming back to the original metric provides a biased estimator for the mean of the response variable. For the normal linear model, fit under a log-transformation, correction factors are available to reduce this bias, but these factors may not be generally applicable to all model forms or other transformations. We demonstrate that this problem is handled in a straightforward manner using a Bayesian approach, which is general for linear and nonlinear models and other transformations and model error structures. The Bayesian framework provides a predictive distribution for the response variable so that inference can be made at the mean, or over the entire distribution to incorporate the predictive uncertainty.  相似文献   

14.
《Ecological modelling》2005,181(4):535-556
Observational models for the catch of fish at age a (or size) at time t are fundamental equations in fisheries science, linking a population model with data. The well known Baranov catch equation (which assumes that fishing and natural mortalities are constant over both age and time) is a nominal basis of those most commonly used in fish stock assessment and fish population models (which assume that fishing and natural mortalities vary with both age and time). But, what should a catch equation look like, if the instantaneous rates of fishing and natural mortalities of fish of age a at time t vary with age a and time t? Without answering this question, use of those catch equations in fish stock assessment and population models renders their results uncertain. In this paper, I derive a general catch in number or in biomass equation as observational models of an age- and time-dependent model for a fish population by Taylor series expansion of, and by directly manipulating, a general catch integral, reduce it to commonly used catch equations, and compare the performance of 11 of them using data on the western king prawn Penaeus latisulcatus. I show that the nominal generalization of the Baranov catch equation misses several terms. In so doing, I derive the catch equations more accurately and restore these missing terms. Although almost all approximations overestimate the catch per recruit for older prawns, all commonly used catch equations and their extensions perform worse than theoretically sound representations of the general catch equation and their approximations. The age-specific bias of all models is <2.5, <18 and <90% for a time interval of sampling of 1, 7 and 30 days, respectively. Such large biases even for moderate values of the length of the time interval of sampling highlight a need for assessing the utility of commonly used catch equations for individual species.  相似文献   

15.
This paper presents a mathematical model to investigate type II profile of suspension concentration distribution (i.e., the concentration profile where the maximum concentration appears at some distance above the bed surface) in a steady, uniform turbulent flow through open-channels. Starting from the mass and momentum conservation equations of two-phase flow, a theoretical model has been derived. The distribution equation is derived considering the effects of fluid lift force, drag force, particle inertia, particle–particle interactions, particle velocity fluctuations and drift diffusion. The equation is solved numerically and is compared with available experimental data as well as with other models existing in the literature. Good agreement between the observed value and computed result, and minimum error in comparison to other models indicate that the present model can be applied in predicting particle concentration distribution for type II profile for a wide range of flow conditions. The proposed model is also able to show the transition from type I profile to type II profile.  相似文献   

16.
The considerable complexity often included in biophysical models leads to the need of specifying a large number of parameters and inputs, which are available with various levels of uncertainty. Also, models may behave counter-intuitively, particularly when there are nonlinearities in multiple input-output relationships. Quantitative knowledge of the sensitivity of models to changes in their parameters is hence a prerequisite for operational use of models. This can be achieved using sensitivity analysis (SA) via methods which differ for specific characteristics, including computational resources required to perform the analysis. Running SA on biophysical models across several contexts requires flexible and computationally efficient SA approaches, which must be able to account also for possible interactions among parameters. A number of SA experiments were performed on a crop model for the simulation of rice growth (Water Accounting Rice Model, WARM) in Northern Italy. SAs were carried out using the Morris method, three regression-based methods (Latin hypercube sampling, random and Quasi-Random, LpTau), and two methods based on variance decomposition: Extended Fourier Amplitude Sensitivity Test (E-FAST) and Sobol’, with the latter adopted as benchmark. Aboveground biomass at physiological maturity was selected as reference output to facilitate the comparison of alternative SA methods. Rankings of crop parameters (from the most to the least relevant) were generated according to sensitivity experiments using different SA methods and alternate parameterizations for each method, and calculating the top-down coefficient of concordance (TDCC) as measure of agreement between rankings. With few exceptions, significant TDCC values were obtained both for different parameterizations within each method and for the comparison of each method to the Sobol’ one. The substantial stability observed in the rankings seem to indicate that, for a crop model of average complexity such as WARM, resource intensive SA methods could not be needed to identify most relevant parameters. In fact, the simplest among the SA methods used (i.e., Morris method) produced results comparable to those obtained by methods more computationally expensive.  相似文献   

17.
This paper is concerned with the prediction of mass and momentum transport in turbulent wall jets developing over smooth and transitionally rough plane walls. The ability to accurately predict the resulting wall shear stresses and vertical profiles of the Reynolds stresses in these flows is prerequisite to the accurate prediction of bed scour, sediment re-suspension and transport by turbulent diffusion. The computations were performed by solving the Reynolds-averaged forms of the equations describing conservation of mass, momentum and concentration. The unknown correlations that arise from the averaging process (the Reynolds stresses in the case of the momentum equation, and the turbulent mass fluxes in the case of concentration) were obtained from the solution of modeled differential equations that describe their conservation. Since these models are somewhat more complex than those typically used in practice, their benefits are demonstrated by comparisons with results obtained from simpler, eddy-viscosity based closures. Comparisons with experimental data show that results of acceptable accuracy can be obtained only by using the appropriate combination of models for the turbulent fluxes of mass and momentum that properly account for the reduction of the Reynolds stresses due to wall damping effects, and for the modification of the mass transfer rates due to interactions with the mean rates of strain.  相似文献   

18.
19.
A matrix model for simulating concentration distributions of water quality constituents with coupled reactions in an estuary is developed from a large scale systems approach. The model is an approximation to the set of coupled partial differential equations describing the process. This steady state approximation is formulated as a large algebraic system consisting of coupled subsystems. The large algebraic system is solved by an efficient iterative method. Results utilizing actual field data are presented for the nitrogen cyle with five constituent forms of nitrogen for Corpus Christi Bay, Texas. Simulated and observed concentrations are compared.  相似文献   

20.
Jonard M  Andre F  Ponette Q 《Ecology》2006,87(9):2306-2318
In mixed-species stands, modeling leaf litter dispersal is important to predict the physical and chemical characteristics of the forest floor, which plays a major role in nutrient cycling and in plant population dynamics. In this study, a spatially explicit model of leaf litterfall was developed and compared with two other models. These three models were calibrated for a mixed forest of oak and beech using litterfall data from mapped forest plots. All models assumed that an allometric equation described individual leaf litter production, but they strongly differed in the modeling of the probability density of leaf shedding with distance from source trees. Two models used a negative exponential function to account for leaf dispersal with distance, and this function was allowed to vary according to wind direction in one of them. In contrast, our approach was based on a simple ballistic equation considering release height, wind speed, wind direction, and leaf fall velocity; the distributions of wind speeds and wind directions were modeled according to a Weibull and a Von Mises distribution, respectively. Using an independent validation data set, all three models provided predictions well correlated to measurements (r > 0.83); however, the two models with a direction-dependent component were slightly more accurate. In addition, parameter estimates of the ballistic model were in close agreement with a foliar litter production equation derived from the literature for beech and with wind characteristics measured during leaf litterfall for both species. Because of its mechanistic background, such a spatially explicit model might be incorporated as a litterfall module in larger models (nutrient cycling, plant population dynamics) or used to determine the manner in which patch size in mixed-species stands influences litter mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号