首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Magnesium-aluminum oxide (Mg-Al oxide) prepared by the thermal decomposition of a hydrotalcite-like compound was found to have potential for treating NaBF(4) wastewater. The Mg-Al oxide removed the BF(4)(-) and F(-) and H(3)BO(3) from the NaBF(4) solution. With increasing Mg-Al oxide quantity and time, the BF(4)(-) concentration decreased and the degree of BF(4)(-), F(-), and boron removal increased. The decrease in the BF(4)(-) concentration resulted from uptake by the Mg-Al oxide and not hydrolysis. The Mg-Al oxide took up F(-) from the solution preferentially. The Mg-Al oxide also converted the H(3)BO(3) in the aqueous solution into H(2)BO(3)(-), which it took up.  相似文献   

3.
Ko KB  Byun Y  Cho M  Namkung W  Shin DN  Koh DJ  Kim KT 《Chemosphere》2008,71(9):1674-1682
The influence of HCl on the oxidation of gaseous elemental mercury (Hg0) has been investigated using a dielectric barrier discharge (DBD) plasma process, where the temperature of the plasma reactor and the composition of gas mixtures of HCl, H2O, NO, and O2 in N2 balance have been varied. We observe that Cl atoms and Cl2 molecules, created by the DBD process, play important roles in the oxidation of Hg0 to HgCl2. The addition of H2O to the gas mixture of HCl in N2 accelerates the oxidation of Hg0, although no appreciable effect of H2O alone on the oxidation of Hg0 has been observed. The increase of the reaction temperature in the presence of HCl results in the reduction of Hg0 oxidation efficiency probably due to the deterioration of the heterogeneous chemical reaction of Hg0 with chlorinated species on the reactor wall. The presence of NO shows an inhibitory effect on the oxidation of Hg0 under DBD of 16% O2 in N2, indicating that NO acts as an O and O3 scavenger. At the composition of Hg0 (280 microg m(-3)), HCl (25 ppm), NO (204 ppm), O2 (16%) and N2 (balance) and temperature 90 degrees C, we obtain the nearly complete oxidation of Hg0 at a specific energy density of 8 J l(-1). These results lead us to suggest that the DBD process can be viable for the treatment of mercury released from coal-fired power plants.  相似文献   

4.
通过固定床实验系统研究烟气脱除零价汞的实验,首先研究了滤袋常用的聚苯硫醚(polyphenylene sulfide,PPS)以及活性炭纤维(activated carbon fiber,ACF)在不同温度、不同气体组分下负载V2O5-WO3/TiO2催化剂,对模拟燃煤烟气中零价汞(Hg^0)的脱除效果。然后对比研究了活性炭纤维协同滤袋常用纤维负载催化剂后,对模拟燃煤烟气中Hg^0的脱除性能。结果表明,在汞蒸气人口浓度为50μg/m^3,纯N2气氛下,当温度为25℃时,两者脱除率均能达到99%,当温度为200℃,负载催化剂的活性炭纤维脱除率在30%左右,PPS纤维仅为10%左右。在200℃情况下,模拟烟气的组分为N2+O2时,2种纤维的Hg^0脱除率提高了10%~20%,当在混合气体中添加0.01%。后,负载催化剂的PPS纤维Hg^0脱除率能达到80%,活性炭纤维Hg^0脱除率能达到98%。当温度为200℃,模拟烟气的组分为N2+O2+HCl时,不同性能掺炭纤维负载催化剂后Hg^0脱除率在69%~95%范围之间变化,其中PPS掺炭纤维对Hg^0脱除效率最高达到95%,因此,负载V2O5-WO3/TiO2催化剂的PPS掺炭纤维能在高温烟气中保持较高的Hg^0脱除率。  相似文献   

5.
Photodegradation of humic acids in the presence of hydrogen peroxide   总被引:4,自引:0,他引:4  
Wang GS  Liao CH  Wu FJ 《Chemosphere》2001,42(4):379-387
A batch photoreactor was used to evaluate the UV/H2O2 oxidation process for the removal of humic acids in water. A 450-W UV lamp with high-pressure mercury vapor was employed as the light source. The residues of humic acids and hydrogen peroxide were measured for assessment of process performance and understanding of process reaction behavior. The UV photolysis alone can play an important role in the degradation of humic acids. The presence of hydrogen peroxide was found to promote the degradation efficiency. However, excessive dosage of H2O2 does not further improve the degradation of humic acids. On the contrary, the lower the H2O2 dosage the higher the amount of humic acids which can be removed. Aeration with air does not favor the removal efficiency of humic acids as the oxidation lasts for a sufficiently long time. The presence of carbonate species deteriorates the humic acids' removal, whereas it results in a larger amount of H2O2 decomposition.  相似文献   

6.
Leachate samples with a high strength of ammonium-nitrogen (NH4+-N) were collected from a local landfill site in Hong Kong. Two experiments were carried out to study (1) the inhibition of microbial activity of activated sludge by NH4+-N and (2) the chemical precipitation of NH4+-N from leachate as a preliminary treatment prior to the activated sludge process. The experimental results demonstrated that the efficiency of COD removal decreased from 97.7% to 78.1%, and the dehydrogenase activity of activated sludge decreased from 9.29 to 4.93 microg TF/mg MLSS, respectively, when the NH4+-N concentration increased from 53 to 800 mg/l. The experiment also demonstrated that the NH4+-N in the leachate can be quickly precipitated as MgNH4PO4 x 6H2O after addition of MgCl2 x 6H2O + Na2HPO4 x 12H2O. The NH4+-N concentration was reduced from 5618 to 112 mg/l within 15 min when a molar ratio of Mg2+:NH+:PO4(3-) = 1:1:1 was used. The optimum pH to reach the minimum solubility of MgNH4PO4 x 6H2O was found to be in the range of 8.5-9.0. Attention should be given to the high salinity formed in the treated leachate by using MgCl2 x 6H2O + Na2HPO4 x 12H2O, which may affect microbial activity in the following biological treatment processes. Using two other combinations of chemicals [MgO + 85%H3PO4 and Ca(H2PO4)2 x H2O + MgSO4 x 7H2O] could minimise salinity generation after precipitation, while they were less efficient for NH4+-N removal.  相似文献   

7.
Catalytic oxidation of gaseous PCDD/Fs with ozone over iron oxide catalysts   总被引:2,自引:0,他引:2  
Wang HC  Chang SH  Hung PC  Hwang JF  Chang MB 《Chemosphere》2008,71(2):388-397
Catalytic oxidation of PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) with ozone (catalytic ozonation) over nano-sized iron oxides (denoted as FexOy) was carried out at temperature of 120-180 degrees C. The effects of operating temperature, ozone concentration, space velocity (SV) and water vapor contents on PCDD/F removal and destruction efficiencies via catalytic ozonation were investigated. High activity of the iron oxide catalyst towards PCDD/F decomposition was observed even at low temperatures with the aid of ozone. The PCDD/F removal and destruction efficiencies achieved with FexOy/O3 at 180 degrees C reach 94% and 91%, respectively. In the absence of ozone, the destruction efficiencies of all PCDD/F congeners are below 20% and decrease with increasing chlorination level of PCDD/F congener at lower temperature (120 degrees C). However, in the presence of ozone, the destruction efficiencies of all PCDD/F congeners are over 80% on FexOy/O3 at 180 degrees C. Higher temperature and ozone addition increase the activity of iron oxide for the decomposition of PCDD/Fs. Additionally, in the presence of 5% water vapor, the destruction efficiency of the PCDD/Fs is above 90% even at lower operating temperature (150 degrees C). It indicates that the presence of appropriate amount of water vapor enhances the catalytic activity for the decomposition of gas-phase PCDD/Fs.  相似文献   

8.
Fan HJ  Chen IW  Lee MH  Chiu T 《Chemosphere》2007,67(8):1647-1652
Due to the growing concern of highly contaminated landfill leachate problems in Taiwan, an innovative advanced catalytic oxidation (FeGAC/H(2)O(2)) process was developed and employed in this research to treat the landfill leachate from central Taiwan. Experimental results indicated that the FeGAC/H(2)O(2) process could effectively remove organic compounds from landfill leachate. The presence of iron oxide coated granular activated carbon (FeGAC) greatly improved the oxidative ability of H(2)O(2) for the removal of humic acids, fulvic acids and non-humic substance from leachate. For instance, at pH 6, the removal efficiencies of FeGAC/H(2)O(2) and H(2)O(2) processes were 70% and 8%, respectively. FeGAC/H(2)O(2) combined both advantages of FeGAC and H(2)O(2) where FeGAC had good organics adsorption ability and could effectively catalyse the hydrogen peroxide oxidation reaction for organics removal.  相似文献   

9.
The removal of sulfur dioxide (SO2) from simulated flue gases streams (N2/O2/H2O/SO2) was experimentally investigated using microgap discharge. In the experiment, the thinner dielectric layers of aluminum oxide (Al2O3) were used to form the microgap discharge. With this physical method, a high concentration of hydroxyl (OH*) radicals were produced using the ionization of O2 and H2O to further the conversion of SO2 into sulfuric acid (H2SO4) at 120 degrees C in the absence of any catalysts and absorbents, which were captured with the electrostatic precipitator (ESP). As a result, the increase of discharge power and concentrations of O2 and H2O increased the production of OH. radicals resulting in enhanced removal of SO2 from gas streams. With the test and analysis, a number of H2SO4 droplets were produced in experiment. Therefore, a new method for removal of SO2 in semidry method without ammonia (NH3) additive was found.  相似文献   

10.
The removal of trans-chlordane (C(10)H(6)Cl(8)) from aqueous solutions was studied using UV, UV/H(2)O(2), UV/H(2)O(2)/Fe(2+), UV/TiO(2), or UV/TiO(2)/H(2)O(2) treatment using either UV/Vis blue lamps or UVC lamps (254 nm). H(2)O(2), FeSO(4) and TiO(2) were added at 1700, 456, and 2500 mgL(-1), respectively. trans-Chlordane was not significantly removed in non-irradiated controls and in samples irradiated with UV/Vis. It was also not removed in the absence of surfactant Triton X-114 added at 250 mgL(-1). In the presence of the surfactant, trans-chlordane concentration was reduced by 95-100% after 48 h of UVC and UVC/H(2)O(2) treatments and 70-80% after UVC/H(2)O(2)/Fe(2+), UVC/TiO(2) and UVC/H(2)O(2)/TiO(2) treatments. Based on these results, UVC, UVC/H(2)O(2) and UVC/TiO(2) treatments were further investigated. UVC treatment supported the highest pollutant removal (100% in 48 h), dechlorination efficiency (81% in 48 h), and detoxification to Lepidium sativum seed germination and activated sludge respiration although irradiated samples remained toxic to Chlorella vulgaris. Biodegradation of the UVC irradiated samples removed the source of algae toxicity but this could not be clearly attributed to the removal of trans-chlordane photoproducts because the surfactant interfered with the chemical and biological assays. Evidence was found that trans-chlordane was photodegraded through photolysis causing its successive dechlorination. trans-Chlordane removal was well described by a first order kinetic model at a rate of 0.21±0.01h(-1) at the 95% confidence interval.  相似文献   

11.
在Ti(Ⅳ)和过氧化氢存在条件下,考察了臭氧化酸性苯乙酮溶液、硝基苯溶液和垃圾渗滤液(浙江衢州某垃圾填埋场)的预处理效能。结果表明,在pH2.86条件下,单独臭氧化处理对苯乙酮、硝基苯和垃圾渗滤液的COD去除率分别为10.1%、44%和28.6%。BOD,/COD值分别从原来的0.039、0.060和0.085提高到了0.130、0.158和0.174,仍属生化难降解废水。当体系加入Ti(Ⅳ)后,臭氧化苯乙酮和硝基苯的COD去除率分别达到了75.5%和65%,BOD;/COD则提高到了0.679和0.314,可生化性提升明显。对于垃圾渗滤液,只有当体系加入Ti(Ⅳ)和H22后,臭氧化COD的去除率达到66.6%,BOD、/COD提高至0.425。上述结果对酸性难降解废水的处理实际意义非常突出。  相似文献   

12.
Fang J  Barcelona MJ 《Chemosphere》2003,50(1):105-109
The oxidation capability of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) coupled oxidation of aromatic hydrocarbons (o-xylene-d10 and naphthalene-d8) was investigated. Batch experiments were conducted using horseradish peroxidase prepared in potassium phosphate buffer in the presence of H2O2. The oxidation of aromatic hydrocarbon was tested as a function of HRP at a fixed concentration of H2O2, and as a function of the concentration of H2O2 at a constant HRP activity (4000 units/ml). The mass removal of o-xylene-d10 and naphthalene-ds increased with increasing HRP enzymatic activity, and up to 54% and 51% of mass removal were observed for o-xylene-d10 and naphthalene-d8, respectively. Increasing the concentration of H2O2 resulted in increased mass removal of aromatic hydrocarbons.  相似文献   

13.
The present work deals with photooxidative removal of the herbicide, Acid Blue 9 (AB9), in water in the presence of hydrogen peroxide (H2O2) under UV light illumination (30 W). The influence of the basic operational parameters such as amount of H2O2, irradiation time and initial concentration of AB9 on the photodegradation efficiency of the herbicide was investigated. The degradation rate of AB9 was not appreciably high when the photolysis was carried out in the absence of H2O2 and it was negligible in the absence of UV light. The photooxidative removal of the herbicide was found to follow pseudo-first-order kinetic, and hence the figure-of-merit electrical energy per order (E Eo) was considered appropriate for estimating the electrical energy efficiency. A mathematical relation between the apparent reaction rate constant and H2O2 used was applied for prediction of the electricity consumption in the photooxidative removal of AB9. The results indicated that this kinetic model, based on the initial rates of degradation, provided good prediction of the E Eo values for a variety of conditions. The results also indicated that the UV/H2O2 process was appropriate as the effective treatment method for removal of AB9 from the contaminated wastewater.  相似文献   

14.
Ryba SA  Burgess RM 《Chemosphere》2002,48(1):139-147
The elemental composition of marine sediment provides useful information for the study of environmental processes including biogeochemical cycling and contaminant partitioning. It is common practice to acidify marine sediment samples to remove carbonate before measuring the concentrations of organic carbon (C). To date, however the effects of acidification on the concentrations of hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) in marine sediments have not been explicitly addressed. Acidification may contaminate or alter the sediment samples and create experimental artifacts affecting the validity of resulting H/C, C/N and O/C ratios. The objective of this study was to quantify how various preparation techniques affect the measured concentrations of C, H, N, S and O in marine sediments. Effects of four different pretreatments: unacidified (whole), acidification by HCl vapor, acidification by direct addition of HCl, and combustion were evaluated using five marine sediments and a standard reference material. The magnitude of carbonate loss between the vapor and direct acidification treatments was evaluated using stable C isotope analysis. Carbonates were most effectively removed by direct addition of HCl; and our results agree with findings of other studies which found direct addition of HCl to be the most accurate method for measuring organic C. However, the acid treatments elevated the apparent concentration of H and O; and in a few cases concentrations of N and S were significantly affected by acidification. In general, combustion significantly reduced all elemental concentrations compared to the whole sample. Based on these results, we recommend analysis of the untreated whole sediment for determining N, H, O, and S.  相似文献   

15.
This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl <=> CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300,000 (g gas/cm2/s/atm gas), respectively. Thus, the kinetics of the calcination reaction were found to be much faster (approximately 500 times) than those of the sulfation reaction examined previously in this laboratory.  相似文献   

16.
Removal of nitrogen and phosphate from wastewater by addition of bittern   总被引:30,自引:0,他引:30  
Lee SI  Weon SY  Lee CW  Koopman B 《Chemosphere》2003,51(4):265-271
Removal of nitrogen and phosphate through crystallization of struvite (MgNH(4)PO(4).6H(2)O) has gained increasing interest. Since wastewaters tend to be low in magnesium relative to ammonia and phosphates, addition of this mineral is usually required to effect the struvite crystallization process. The present study evaluated the feasibility of using bittern, a byproduct of salt manufacture, as a low-cost source of magnesium ions. High reaction rates were observed; the extent of nitrogen and phosphorus removals did not change beyond 10 min. Phosphorus removals from pure solutions with bittern added were equivalent to those obtained with MgCl(2) or seawater. Nitrogen removals with bittern were somewhat lower than with the alternate Mg(2+) sources, however. Application of bittern to biologically treated wastewater from a swine farm achieved high phosphate removal, but ammonia removals were limited by imbalance in the nitrogen:phosphorus ratio.  相似文献   

17.
强化UV/Fenton法降解水中苯酚的研究   总被引:3,自引:0,他引:3  
研究了UV/Fenton法处理含苯酚废水时H2 O2 和FeSO4 加入量及苯酚初始浓度对酚去除效果的影响及C2 O2 -4 对UV/Fenton法的增强效果。 [H2 O2 ]=2 0mmol/L ,[FeSO4 ]=5mmol/L ,反应 2 0min ,苯酚初始浓度为 5 0mg/L时 ,酚去除率达 99%。UV/Fenton体系中引入C2 O2 -4 后可有效提高对紫外和可见光的利用率 ,进而提高了对高浓度苯酚废水去除效果  相似文献   

18.
Jung J  Yoon JH  Chung HH  Lee MJ 《Chemosphere》2003,51(9):881-885
The effects of H(2)O(2) and O(3) on the decomposition of trichloroethylene (TCE) and perchloroethylene (PCE) by gamma-rays (gamma-rays) were investigated in this work. The combined gamma-rays/O(3) process showed a synergistic effect and enhanced the removal of TCE and PCE compared with gamma-rays alone, but, the gamma-rays/H(2)O(2) process did not increase the removal. This interesting result was successfully identified by an electron paramagnetic resonance spectroscopy/spin-trapping method that can quantify hydroxyl radicals, which is directly related to the efficiency of TCE and PCE decomposition. For gamma-rays/H(2)O(2) system, there was no difference of hydroxyl radical production between gamma-rays alone and gamma-rays/H(2)O(2). This indicates gamma-rays cannot activate H(2)O(2) to produce hydroxyl radicals and this causes no increase of TCE and PCE removals. To the contrary, the production of hydroxyl radicals was obviously increased in the case of gamma-rays/O(3) process. This suggests additional hydroxyl radicals are produced from the reaction of O(3) with the irradiation products of water such as hydrated electrons, hydrogen atoms, etc. and this accelerates the removal of TCE and PCE.  相似文献   

19.
Abstract

Combustion flue gases of three different industrial boilers firing miscellaneous fuels were monitored for a twoweek period. Nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), carbon dioxide (CO2), and total hydrocarbons (CxHy) were continuously measured using single-component gas analyzers in parallel with a lowresolution Fourier Transform Infrared (FTIR) gas analyzer. Hydrogen chloride (HCl) was measured continuously using the FTIR analyzer and semi-continuously using a traditional liquid-absorption technique. Nitrous oxide (N2O), nitrogen dioxide (NO2), and water vapor (H2O) were continuously measured using the FTIR analyzer only. Laboratory tests were conducted prior to the field measurements to assess the detection limits of the different measurement methods for each gas component. No significant differences were found between the results of the low-resolution FTIR analyzer and the single-component analyzers or the liquid absorption method.  相似文献   

20.
A previously proposed technology incorporating TiO2 into common household fluorescent lighting was further tested for its Hg0 removal capability in a simulated flue-gas system. The flue gas is simulated by the addition of O2, SO2, HCl, NO, H2O, and Hg0, which are frequently found in combustion facilities such as waste incinerators and coal-fired power plants. In the O2 + N2 + Hg0 environment, a Hg0 removal efficiency (ηHg) greater than 95% was achieved. Despite the tendency for ηHg to decrease with increasing SO2 and HCl, no significant drop was observed at the tested level (SO2: 5–300 ppmv, HCl: 30–120 ppmv). In terms of NO and moisture, a significant negative effect on ηHg was observed for both factors. NO eliminated the OH radical on the TiO2 surface, whereas water vapor caused either the occupation of active sites available to Hg0 or the reduction of Hg0 by free electron. However, the negative effect of NO was minimized (ηHg > 90%) by increasing the residence time in the photochemical reactor. The moisture effect can be avoided by installing a water trap before the flue gas enters the Hg0 removal system.

Implications: This paper reports a novel technology for a removal of gas-phase elemental mercury (Hg0) from a simulated flue gas using TiO2-coated glass beads under a low-cost, easily maintainable household fluorescent light instead of ultraviolet (UV) light. In this study, the effects of individual chemical species (O2, SO2, HCl, NO, and water vapor) on the performance of the proposed technology for Hg0 removal are investigated. The result suggests that the proposed technology can be highly effective, even in real combustion environments such as waste incinerators and coal-fired power plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号