首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Bog Creek Farm CERCLA (Superfund) site in Howell Township, New Jersey, was extensively contaminated, allegedly with wastes from paint manufacturing. The site contained two types of incinerable wastes: contaminated soils and sediments. A remedial investigation and feasibility study (RI/FS) was conducted, leading to a recommendation to treat the most contaminated areas by incineration. This recommendation was converted into the selected approach through the Record of Decision (ROD) mechanism. Contaminants at the Bog Creek Farm site included a wide range of volatiles, semivolatiles, and heavy metals. The incineration approach chosen, therefore, had to remove the organics from the soil without creating additional problems associated with heavy metals emissions. In order to evaluate the incineration problem and develop an advisory conceptual design for its solution, Ebasco Services Incorporated performed extensive characterizations of the material. Such characterizations included performing proximate and ultimate analyses and determining other key physical, chemical, and thermodynamic properties of the soils and sludges. Energy and Environmental Research Corporation (EER) then performed treatability studies in its rotary kiln test incinerator. These treatability studies focused upon the rotary kiln, and the environment required for cleaning the soil. They assumed that contaminants in the vapor phase could be destroyed in the afterburner. Tests were conducted at bed temperatures of 1,000°F, 1,460°F, and 1,800°F. Samples were drawn from the kiln at intermediate times. Combustion regimes were therefore constructed for the treatment of Bog Creek Farm wastes, maximizing organic removal while managing the heavy metals problem. Ebasco then converted the results of the incinerability or treatability studies into an advisory conceptual design. This advisory conceptual design called for a kiln temperature of 1,600°F (bed temperature of 1,200°F) and a solids residence time in the kiln of 40 minutes. Additional data indicated that the afterburner could operate at 1,800°F in order to ensure destruction of the POHCs. Combustion chemistry fundamentals demonstrated that the minimum afterburner temperature required was 1,650°F. Ebasco converted this conceptual design into a performance specification to be used in the bid process, under the management of the U.S. Army Corps of Engineers. The remediation was then put out to bid. Chemical Waste Management was the successful bidder. The incineration was successfully completed by August 1990; the system was then demobilized, as the site was remediated.  相似文献   

2.
The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability of soil washing technology did not effectively evaluate the removal of the elevated contaminant concentrations that were found. To further evaluate the applicability of soil washing at this industrial site, a second more comprehensive pilot-scale treatability test was conducted. Twenty-three test runs were conducted over a two-week period in late September 1992, using a pilot-scale soil washing device called the volume reduction unit (VRU). The experimental design evaluated the effects of two wash temperatures, two pH levels, three surfactants, four surfactant concentrations, and two liquid-to-soil ratios on the contaminant removal efficiency of the soil washing process. Site soils from layers at three different depths were used in the study. Results from the pilot-scale treatability test indicated that the VRU could achieve contaminant reduction efficiencies of 97 percent for heptachlor and greater than 91 percent for dieldrin in the uppermost contaminated soils (surface to 1-ft. depth). Residual concentrations of heptachlor and dieldrin in the treated soil ranged from 50 ppm to less than 1.6 ppm, and 6.8 ppm to less than 1.6 ppm, respectively. However, the analytical method detection limit of 1.6 ppm was not low enough to provide residual concentration data at the risk-based action levels of 0.55 ppm for heptachlor and 0.15 ppm for dieldrin.  相似文献   

3.
Application of fungal‐based bioaugmentation was evaluated for the remediation of creosote‐contaminated soil at a wood‐preserving site in West Virginia. Soil at the site contained creosote‐range polycyclic aromatic hydrocarbons (PAHs) at concentrations in some areas that exceed industrial risk‐based levels. Two white‐rot fungi (Pleurotus ostreatus and Irpex lacteus) were evaluated for remediation effectiveness in a two‐month bench‐scale treatability test. Both fungi produced similar results, with up to 67.3 percent degradation of total PAHs in 56 days. Pilot‐scale testing was performed at the site using Pleurotus ostreatus grown on two local substrate mixtures. During the 276‐day field trial, total PAHs were degraded by up to 93.2 percent, with all individual PAHs except one achieving industrial risk‐based concentrations. It was recommended that fungal‐based remediation be applied to all contaminated soil at the site. © 2002 Wiley Periodicals, Inc.  相似文献   

4.
Per‐ and polyfluoroalkyl substances (PFAS) are a class of stable compounds widely used in diverse applications. These emerging contaminants have unique properties due to carbon–fluorine (C–F) bonds, which are some of the strongest bonds in chemistry. High energy is required to break C–F bonds, which results in this class of compounds being recalcitrant to many degradation processes. Many technologies studied that have shown treatment effectiveness for PFAS cannot be implemented in situ. Chemical oxidation is a demonstrated remediation technology for in situ treatment of a wide range of organic environmental contaminants. An overview of relevant literature is presented, summarizing the use of single or combined reagent chemical oxidation processes that offer insight into oxidation–reduction chemistries potentially capable of PFAS degradation. Based on the observations and results of these studies, bench‐scale treatability tests were designed and performed to establish optimal conditions for the formation of specific free radical species, including superoxide and sulfate radicals, via various combinations of oxidants, catalysts, pH buffers, and heat to assess PFAS treatment by chemical oxidants. The study also suggests the possible abiotic transformations of some PFAS when chemical oxidation is or was used for treatment of primary organic contaminants (e.g., petroleum or chlorinated organic compounds) at a site. The bench‐scale tests utilized field‐collected samples from a firefighter training area. Much of the available data related to chemical oxidation of PFAS has only been reported for one or both of the two more commonly discussed PFAS (perfluorooctane sulfonic acid and/or perfluorooctanoic acid). In contrast, this treatability study evaluates oxidation of a diverse list of PFAS analytes. The results of this study and published literature conclude that heat‐activated persulfate is the oxidation method with the best degradation of PFAS. Limited reduction of reported PFAS concentrations in this study was observed in many oxidation reactors; however, unknown mass of PFAS (such as precursors of perfluoroalkyl acids) that cannot be identified in a field collected sample complicated quantification of how much oxidative destruction of PFAS actually occurred.  相似文献   

5.
Site investigations at an oil and gas facility identified a highly acidic waste referred to as residual acid tar that resulted in the transport of dissolved nickel toward the point of compliance at concentrations that exceeded site environmental screening levels. Solidification/stabilization (S/S) via deep soil mixing was selected as the remedial approach and a mixture of ground granulated blast furnace slag cement and Portland cement was subjected to treatability testing to evaluate the reagent mix's ability to achieve treatment objectives. Results from the treatability test showed a cement mix dose of 21 percent was sufficient to raise the pH above the target of 6.0 and reduce dissolved nickel concentrations to below site screening levels in leachate from treated samples of residual acid tar and material impacted by residual acid tar. Cement mix doses of 21 percent or greater were sufficient to achieve target strengths in the unimpacted shallow overburden. However, none of the doses tested were able to achieve target strengths in the residual acid tar or peaty material impacted by the residual acid tar. Results showed soil strengths increased significantly when the pH in leachate from the treated samples approached 12, suggesting the presence of organic acids related to the peaty soils may interfere with the cement set. Recommendations from the study include additional treatability testing to evaluate pre‐treatment with hydrated lime to satisfy acid neutralization requirements prior to dosing with the cement mix. ©2016 Wiley Periodicals, Inc.  相似文献   

6.
This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water soluble fractions of the soil, and column leachates were evaluated. Two bioassays, a mutagenic potential asay (Ames assay) and an aqueous toxicity assay (Microtox assay) were used to evaluate detoxification; high performance liquid chromatography was used to evaluate chemical concentration and degradation for eight polynuclear aromatic hydrocarbons (PAHs). The group of non-carcinogenic PAHs studied demonstrated greater degradation, ranging from 54–90% of mass added for the four wastes; the carcinogenic group of PAHs studied exhibited degradation ranging from 24–53% of mass added. Although no mutagenicity was observed in waste/soil mixtures after one year of treatment, Microtox toxicity was observed in water soluble fractions and in leachate samples. An integration of information concerning degradation of hazardous constituents with bioassay information represents an approach for designing treatability studies and for evaluating the effectiveness of in-situ bioremediation of contaminated soil/waste systems. When combined with information from waste, site and soil characterization studies, the data generated in treatability studies may be used in predictive mathematical models to: (1) evaluate the effectiveness of use of on-site bioremediation for treatment of wastes in soil systems; (2) develop appropriate containment structures to prevent unacceptable waste transport from the treatment zone; and (3) design performance monitoring strategies.  相似文献   

7.
As the limitations of site remedial technologies become more apparent and greater experience in their field implementation and effectiveness is gained, increased emphasis is placed on development of a structured technology selection process. Ideally, this selection process should yield the most cost-effective technology, which will accomplish cleanup goals in the shortest time frame. Although laboratory treatability studies comprise an essential component of this process, very little has been written about the methodology of designing, executing, and assessing the value of their results. This article presents practical considerations for environmental professionals who use treatability results in technology selection or others who execute such studies.  相似文献   

8.
This paper gives the PCDD/F fingerprint of boiler and fly ash of a full scale hazardous waste incinerator and demonstrates that, when the waste to be incinerated contains high concentrations of PCBs and chlorinated pesticides, heterogeneous precursor condensation is the dominant PCDD/F formation mechanism rather than de novo synthesis. This is in contrast to full-scale municipal solid waste incinerators, where de novo synthesis has been shown to be the dominant PCDD/F formation mechanism. This paper agrees with earlier predictions based on numerous lab scale experiments.  相似文献   

9.
Contaminated groundwater at a chemical antioxidant and phenolic resin chemical production site was subjected to treatability studies to develop design criteria for surface water discharge. Raw groundwater required pretreatment for total suspended solids (TSS) and color removal prior to treatment by ultraviolet light/hydrogen peroxide (UV/H2O2). Because of high capital and operating costs for UV/H2O2, biological treatment was evaluated as an alternate. Respirometric analyses showed that completely mixed activated sludge could be applied as a treatment technology to the groundwater. Biotreatment resulted in an approximately 70 percent reduction in soluble chemical oxygen demand (SCOD). Residual SCOD was recalcitrant to further biodegradation. The treated effluent was tested for aquatic toxicity using fathead minnows (Pimephales promelas) and Ceriodaphnia dubia and was found to be toxic. Toxicity reduction of biotreatment effluent was evaluated in bench-scale experiments using activated carbon adsorption, filtration, and UV/H2O2. Subsequent toxicity testing showed that filtration alone could reduce the bioeffluent toxicity and that residual SCOD was not the primary source of toxicity.  相似文献   

10.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Bench‐scale solvent extraction and soil washing studies were performed on soil samples obtained from three abandoned wood preserving sites included in the National Priority List. The soil samples from these sites were contaminated with high levels of polyaromatic hydrocarbons (PAHs), pentachlorophenol (PCP), dioxins, and heavy metals. The effectiveness of the solvent extraction process was assessed using liquefied propane or dimethyl ether as solvents over a range of operating conditions. These studies have demonstrated that a two‐stage solvent extraction process using dimethyl ether as a solvent at a ratio of 1.61 per kg of soil could decrease dioxin levels in the soil by 93.0 to 98.9 percent, and PCP levels by 95.1 percent. Reduction percentages for benzo(a)pyrene (BaP) potency estimate and total detected PAHs were 82.4 and 98.6 percent, respectively. Metals concentrations were not reduced by the solvent extraction treatment. These removal levels could be significantly improved using a multistage extraction system. Commercial scale solvent extraction using liquefied gases costs about $220 per ton of contaminated soil. However, field application of this technology at the United Creosote site, Conroe, Texas, failed to perform to the level observed at bench scale due to the excessive foaming and air emission problem. Soil washing using surfactant solution and wet screening treatability studies were also performed on the soil samples in order to assess remediation strategies for sites. Although aqueous phase solubility of contaminants seemed to be the most important factor affecting removal of contaminants from soil, surfactant solutions (3 percent by weight) having nonionic surfactants with hydrophile‐lipophile balance (HLB) of about 14 (Makon‐12 and Igepal CA 720) reduced the PAH levels by an average of 71 percent, compared to no measurable change when pure deionized water was used. Large fractioza of clay and silt (<0.06mm), high le!ezielsof orgaizic contami‐ nants and hzimic acid can makesoil washing less applicable.  相似文献   

12.
Nanoscale zero valent iron (nZVI) was evaluated in a laboratory treatability study and subsequently injected as an interim measure to treat source area groundwater impacts beneath a former dry cleaner located in Chapel Hill, North Carolina (the site). Dry cleaning operations resulted in releases of tetrachloroethene (PCE) that impacted site soil at concentrations up to 2,700 mg/kg and shallow groundwater at concentrations up to 41 mg/L. To achieve a design loading rate of 0.001 kg of iron per kilogram of aquifer material, approximately 725 kg of NanoFe? (PARS Environmental) was injected over a two‐week period into a saprolite and partially weather rock aquifer. Strong reducing conditions were established with oxidation–reduction potential (ORP) values below –728 mV. pH levels remained greater than 8 standard units for a period of 12 months. Injections resulted in near elimination of PCE within one month. cis‐1,2‐Dichloroethene accumulated at high concentrations (greater than 65 mg/L) for 12 months. MAROS software (Version 2.2; AFCEE, 2006 ) was used to calculate mass reduction of PCE and total ethenes at 96 percent and 58 percent, respectively, compared to baseline conditions. Detections of acetylene confirmed the presence of the beta‐elimination pathway. Detections of ethene confirmed complete dechlorination of PCE. Based on hydrogen gas generation, iron reactivity lasted 15 months. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Careful design studies and selection of an effective technique for the installation of permeable reactive barriers (PRBs) are important contributors to the overall success of zero‐valent iron PRBs. This article provides a case study summarizing the successful design and construction of a PRB installed at the former Carswell Air Force Base located in Fort Worth, Texas. Expedited site characterization using a cone penetrometer rig equipped with a mass spectrometer was employed to provide real‐time characterization and lithologic data. These data proved to be invaluable for the design of the PRB and allowed for the development of an accurate preconstruction cost estimate. Field data gained from the expedited water quality and geologic characterization along with aquifer testing and a bench‐scale treatability study provided a comprehensive basis for the design. The biopolymer slurry construction technique provided additional unanticipated benefits to the designed zero‐ valent iron treatment by promoting the development of anaerobic conditions favorable for microbial degradation of trichloroethene. Postconstruction monitoring data are discussed to illustrate the successful performance of the PRB. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
This study has been conducted at the University of Connecticut (UCONN) in connection with the USEPA Superfund Innovative Technology Evaluation (SITE) program to evaluate a chemical oxidation technology (sodium persulfate) developed at UCONN. A protocol to assess the efficacy of oxidation technologies has been used. This protocol, which consists of obtaining data from a treatability study, tested two in-situ chemical oxidation technologies that can be used on soil and groundwater at a site in Vernon, Connecticut. Based on the treatability report results and additional field data collected at the site, the design for the field implementation of the chemical oxidation remediation was completed. The results indicate that both sodium persulfate and potassium permanganate were able to effectively degrade the target VOCs (i.e., PCE, TCE and cis-DCE) in groundwater and soil-groundwater matrices. In the sodium persulfate tests (120 hrs), the extent of destruction of target VOCs was 74% for PCE, 86% for TCE and 84% for cis-DCE by Na2S2O8 alone and 68% for PCE, 76% for TCE, and 69% for cis-DCE by Fe(II)-catalyzed Na2S2O8. The results demonstrate the sodium persulfate's ability to degrade PCE, TCE and cis-DCE. It is expected that given sufficient dose and treatment time, a higher destruction rate of the dissolved phase contamination can be achieved. The data also indicates that the catalytic effect of the iron chelate on persulfate chemistry was much less pronounced in the soil-groundwater matrix. This indicates an interaction between the iron chelate solution and the soil, which may have resulted in a lower availability of the chelated iron for catalysis. The study showed that the remediation of the VOCs-contaminated soil and groundwater by in-situ chemical oxidation using sodium persulfate is feasible at the Roosevelt Mills site. As a result, the USEPA SITE program will evaluate this technology at this site.  相似文献   

15.
A chlorinated volatile organic compound (cVOC) source area approximately 25 by 100 ft in a heavily industrialized urban area was characterized with groundwater tetrachloroethene (PCE) concentrations up to 9,180 μg/L. This is approximately 6 percent of PCE's aqueous solubility, indicative of the presence of residual dense, nonaqueous phase liquid. The resulting dissolved‐phase plume migrated off‐site. Biotic and abiotic dechlorination using a combination of a food‐grade organic carbon‐based electron donor and zero‐valent iron suspended in a food‐grade emulsifying agent reduced the source area PCE concentrations by 98 percent within 27 weeks, with minimal downgradient migration of daughter products dichloroethene and vinyl chloride. Combining biological dechlorination with iron‐based chemical dechlorination is synergistic, enhancing treatment aggressiveness, balancing pH, and optimizing degradation of both DNAPL and dissolved‐phase cVOCs. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
17.
To stem rising remediation costs for soils contaminated with hazardous metals, increased emphasis is being placed on the development of in-situ and ex-situ treatment technologies. Often, a lack of basic information on the chemical and physical characteristics of the soil and contaminants hampers treatability studies used to design these technologies. This article proposes and demonstrates a characterization program to meet these information needs, employing standard analytical techniques coupled with advanced spectroscopy and microscopy techniques. To support treatments involving physical separation strategies, the program uses standard analytical techniques to characterize the soil and the association of contaminants with different soil fractions (e.g., size and density fractions). Where chemical treatments are required, spectroscopy and microscopy methods are employed to yield quantitative information on the oxidation state and speciation of the contaminant. Examples demonstrate the use of measured soil and contaminant characteristics in the screening of alternative treatment technologies and in the selection of soils for use in treatability studies. Also demonstrated is the use of these characterization tools in the design and optimization of treatment strategies and in support of risk assessment determinations.  相似文献   

18.
The U.S. Environmental Protection Agency helped select in situ vitrification (ISV) as an interim response action for the National Priority List (NPL) site at the Rocky Mountain Arsenal (RMA) in Commerce City, Colorado. That decision is being reviewed, pending redesign of the technology by its vendor for what would be the largest ISV project in the United States, involving 220 tons of arsenic, twenty-six tons of mercury, and low levels of organic compounds. That material was left in three arsenic precipitation basins that were used from 1942 to 1947 to manufacture chemical warfare agents and later backfilled. This article explores the eight principal environmental, technical, and financial factors that EPA's Region VII must address before committing $1,200 per cubic yard, or $14 million, to seal that material in glass.  相似文献   

19.
Soil contamination with persistent pesticides such as dichloro‐diphenyl‐trichloroethane (DDT) is a major issue at many brownfield sites. A technology that can be used to treat DDT‐contaminated soil using surfactants is to enhance the migration of the contaminants from the soil phase to the liquid phase, followed by the dechlorinating of the mobilized DDT in the liquid phase using zero‐valent iron (ZVI). The DDT degradation using ZVI occurs under anaerobic conditions via reductive reactions. The effect of the iron concentration on the dechlorination rate is assessed in the range of 1 to 40 percent (weight to volume) for remediation of a DDT‐contaminated site in Ontario, Canada. The optimum percentage of iron is found to be 20 percent at which the dechlorination rates of DDT and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane (DDD) were 4.5 and 0.6 mg/L/day, respectively. While mixing of the reaction solution is shown to be important in providing the iron surface available for the dechlorination reaction throughout the reaction solution, there is no significant difference between batch and fed‐batch mode of adding iron to the dechlorination process. Low pH values (pH = 3) increased the dechlorination rates of DDT and DDD to 6.03 and 0.75 mg/L/day, respectively at a 20 percent iron concentration, indicating increased dechlorination rates in acidic conditions. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
The present study was designed to screen 20 fungi for their potential to degrade the chlorinated organic pesticides endosulfan and chlorpyrifos. Fungi were first screened for their tolerance to various concentrations of target pesticides using soil extract agar and subsequent degradation studies were performed in soil extract broth containing 25 mg/L of the individual pesticide. Pesticide degradation was evaluated using gas chromatography. Other parameters, such as pH and mycelial weight, were also determined. Based on percent growth inhibition of test fungi and subsequent analysis of EC50 values, the overall results revealed that chlorpyrifos showed significantly more growth inhibition in all tested fungi compared with endosulfan. Trametes hirsuta showed complete degradation of both α‐ and β‐endosulfan isomers and Cladosporium cladosporioides displayed maximum degradation of chlorpyrifos. All test fungi degraded endosulfan more efficiently than chlorpyrifos, except Phanerochaete chrysosporium, Trichoderma harzianum, and Trichoderma virens which showed higher degradation of chlorpyrifos than endosulfan. It was also found that all tested fungi degraded α‐endosulfan more efficiently than β‐endosulfan. Endosulfan sulfate was found to be the major degradation product with all tested fungi. Fungi which showed more endosulfan degradation also produced more endosulfan sulfate. However, less endosulfan sulfate was detected with T. hirsuta and Trametes versicolor, although they degraded endosulfan more efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号