首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The removal of copper and nickel from aqueous solution on the Na-bentonite has been studied under static conditions. Experiments were carried out as a function of solution pH, dosage of Na-bentonite, contact time and temperature. The adsorption equilibrium for nickel and copper onto Na-bentonite is reached in 200 min. The adsorption of copper and nickel is pH dependent in the pH range 2–9. The kinetic process of adsorption can be described by the pseudo-second-order kinetic equation excellently and the adsorption isotherm be fitted to the Langmuir model by means of regression analyses very well. The adsorption capacities follow the order of Cu2+ > Ni2+ in single-component systems and competitive adsorption capacities in order decreasing is Cu2+ > Ni2+ in binary-component systems.  相似文献   

2.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

3.
In this study, chemical oxygen demand (COD) was characterized as total organic constituents and the isolated humic substances (HS) were characterized as an individual organic contaminant in landfill leachate. It was found that the HS content of landfill leachate was 83.3%. The results of laboratory tests to determine the roles of HS in reducing the organic content of landfill leachate during Fenton process are presented. Furthermore, the performances of oxidation and coagulation of Fenton reaction on the removal of HS and COD from leachate were investigated. The change curves of HS removal were similar to those of COD. The HS removal was 30% higher than COD removal, which indicated that HS were mostly degraded into various intermediate organic compounds but not mineralized by Fenton reagent. The oxidation removal was greatly influenced by initial pH relative to the coagulation removal. The oxidation and coagulation removals were linear dependent with hydrogen peroxide and ferrous dosages, respectively. Ferrous dosage greatly influenced the coagulation removal of COD at low ratio ([H2O2]/[Fe2+] < 3.0), but not at extremely high ratio ([H2O2]/[Fe2+] > 6.0). The coagulation removal of HS was not affected obviously by oxidation due to both Fenton oxidation and coagulation remove high molecular weight organics preferentially. Higher temperature gave a positive effect on oxidation removal at low Fe2+ dosage, but this effect was not obvious at high Fe2+ dosage.  相似文献   

4.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

5.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

6.
This study aims to develop a methodology for analysis of characteristics of heavy metals in MSWI fly ash. It performed analysis of composition of heavy metals, leaching toxicity, leaching behavior as a function of pH, specification distribution and corresponding mineral components of residue derived from each step of the sequential extraction. It is found that content of heavy metals follows the sequence of Zn > Pb > Cu > Cr > As > Ni > Cd approximately Hg in both plants, and that total heavy metals account for less than 1% by mass of fly ash. Major hazardous heavy metals in fly ash are As, Cd, Hg, Pb and Zn, whose leaching ratios exceed the limit value described in hazardous waste identification standard. Measured leaching results of Cu, Pb and Zn are essentially consistent with the simulated results at pH between 0 and 13. Content of calcium-silicates, alumino-silicates and glass phases in residue derived from sequential extraction procedure increases steadily from the first step to the fifth step of the sequential extraction procedure. Cu, As, Cr, Hg, Cd, and Ni, relatively stable under strong basic conditions, can be leached out under strong acidic conditions, while Zn and Pb tend to be leached out under both strong acidic and basic conditions.  相似文献   

7.
In this study, pyrolysis of sugarcane bagasse was performed in fixed bed tubular reactor under the conditions of nitrogen atmosphere, by varying temperature and different particle sizes. The effect of final pyrolysis temperature from 400 to 500°C and the nitrogen flow rate from 50 to 200 cc min−1 on the pyrolysis product yields from sugarcane bagasse have been investigated. The Maximum bio-oil yield obtained is 24.12 wt% at the final pyrolysis temperature of 450°C, N2 flow rate of 50 cc min−1 and particle size of mesh number −8 + 12. The yield of bio-oil decreases with increase in temperature from 450 to 550°C and N2 flow rate from 50 to 200 cc min−1. The various characteristics of pyrolysis oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of pyrolysis oil with a heating value of 37.01 MJ Kg−1 was established as CH1.434 O0.555 N0.004. The results from the pyrolysis show the potential of sugarcane bagasse as an important source of liquid hydrocarbon fuel.  相似文献   

8.
The biological aerated filter (BAF) system, a new alternative in drinking water treatment, was designed to remove NH4+–N and Mn2+ simultaneously. This study aimed to control the aeration time in the BAF system for simultaneous NH4+–N and Mn2+ removal to achieve the Malaysian effluent quality regulation for drinking water. The experiment was conducted under four strategies of S1, S2, S3 and S4. The results demonstrated that acceptable levels of NH4+–N and Mn2+ were achieved over a 6 h aeration period (S1), producing effluent concentrations of 0.7 mg/L (93.2% removal) and 0.08 mg/L (79.6% removal), respectively. At the initial treatment of S1 and S2, the dissolved oxygen (DO) level rapidly increased until it reached a saturated concentration (6.8 mg/L DO) after 2 h period. Automatic on–off aeration time to maintain 3 mg/L DO set point (S4) resulted with a good effluent quality of NH4+–N and Mn2+ compared with the 2 mg/L DO set point (S3) which did not meet the regulated standard limits. Through the automatic on–off aeration time, the saturated and excessive DO levels in the BAF system can be avoided consequently reduce the wastage of energy and electrical consumption for simultaneous NH4+–N and Mn2+ removal from drinking water treatment.  相似文献   

9.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   

10.
The potential to remove Pb(II) ion from wastewater treatment systems using raw and treated maize stover through adsorption was investigated in batch experiments. To achieve this, batch mode experiments were conducted choosing specific parameters such as pH (2–8), dosage concentration (2–30 g L−1), contact time (5–180 min), temperature (20–45 °C) and metal ion concentrations (10–50 mg L−1). Adsorption was pH-dependent showing a maximum at pH value 5. The equilibrium sorption capacities of raw and treated maize stover were 19.65 and 27.10 mg g−1, respectively. The adsorption data fitted well to the Langmuir isotherm model. Kinetic studies revealed that the adsorption process followed pseudo-second-order model. The calculated thermodynamic parameters showed that the adsorption of Pb(II) was spontaneous and exothermic in nature. Consequently, this study demonstrated that both raw and treated maize stover could be used as adsorbents for the treatment of Pb(II) from industrial wastewaters.  相似文献   

11.
The present study reported a method for removal of As(III) from water solution by a novel hybrid material (Ce-HAHCl). The hybrid material was synthesized by sol–gel method and was characterized by XRD, FTIR, SEM–EDS and TGA–DTA. Batch adsorption experiments were conducted as a function of different variables like adsorbent dose, pH, contact time, agitation speed, initial concentration and temperature. The experimental studies revealed that maximum removal percentage is 98.85 at optimum condition: pH = 5.0, agitation speed = 180 rpm, temperature = 60 °C and contact time = 80 min using 9 g L−1 of adsorbent dose for initial As(III) concentration of 10 mg L−1. Using adsorbent dose of 10 g L−1, the maximum removal percentage remains same with initial As(III) concentration of 25 mg L−1 (or 50 mg L−1). The maximum adsorption capacity of the material is found to be 182.6 mg g−1. Subsequently, the experimental results are used for developing a valid model based on back propagation (BP) learning algorithm with artificial neural networking (BP-ANN) for prediction of removal efficiency. The adequacy of the model (BP-ANN) is checked by value of the absolute relative percentage error (0.293) and correlation coefficient (R2 = 0.975). Comparison of experimental and predictive model results show that the model can predict the adsorption efficiency with acceptable accuracy.  相似文献   

12.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

13.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

14.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

15.
Functionalized Granular Activated Carbons (FACs) are used as adsorbents for treating pharmaceutical wastewaters containing Chlorhexidine Gluconate. Chemical modifications of Granular Activated Carbons (GACs) using functionalizing agents like HCl and HF produce FACs. The adsorption capacity of each of FAC-HCl and FAC-HF is found to be higher than GAC. The modelled maximum adsorption capacity for FAC-HCl is 1.02 g/g of adsorbent, 3.49 g/g of adsorbent for FAC-HF and 0.0682 g/g of adsorbent for GAC. This is mainly due to the additional chemisorptions by surface complexation at the functionalized surface sites of the modified GACs. This is also supported by the well-known pseudo-second-order kinetic model. Formation of surface complexes with the functional groups and weakly polar Chlorhexidine Gluconate is well supported by the physical characterization using Energy dispersive X-ray spectroscopy (EDAX), Brunner–Emmett–Teller (BET) test and Fourier Transform Infrared spectroscopy (FTIR) analysis after adsorption. The adsorption capacity of GAC and the FACs increases in the order of FAC-HF > FAC-HCl > GAC conforming to the proportion of the total acidity of the carbon surfaces. Intra-particle diffusion is not the sole rate-controlling factor. An agreement to pseudo-second-order kinetic model, Elovich kinetic model and Boyd's film diffusion model proves that chemisorption is the rate-controlling parameter in this adsorption study.  相似文献   

16.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

17.
A biotrickling filter packed with coal slag as packing medium was continuously used for more than 9 months under high ammonia loading rates of up to 140 g/m3/h. Nitrogen mass balance and microbial community analysis were conducted to evaluate the inhibitory effects of high ammonia concentration and metabolic by-products on the rates of nitrification. Ammonia removal efficiency reached above 99% at an empty bed retention time of as low as 8 s when inlet concentrations were below 350 ppm. The maximum and critical elimination capacities of the biotrickling filter were 118 g/m3/h and 108.1 g/m3/h, respectively. Kinetics analysis results showed that less than 2.5 s was required for the biotrickling filter with pH control to treat ammonia at concentrations of up to 500 ppm in compliance with the Taiwan EPA standard (outlet NH3 < 1 ppm). Results of mass balance and microbial community analysis indicated that complete removal was mainly contributed by the activities of autotrophic ammonia oxidizing bacteria and not by physical absorption or adsorption at low loading rates. However, at high inlet loadings, ammonium became the dominant by-product due to inhibitory effects of high ammonia concentration on the bacterial community.  相似文献   

18.
This paper reports the performance of a compost biofilter subjected to periodic intermittent loads of gas-phase hexane and toluene. The biofilter was operated for 10 h per day, at different empty bed residence times (4, 2 and 1.3 min), and at different inlet concentrations of hexane and toluene, varying between 2 and 3.8 g m?3, respectively. Steady-state removal efficiency profiles, reaching more than 90% for both the pollutants, was observed after 44 days of operation. Periodic operation of the compost biofilter was characterized by an adsorption step, followed by biological conversion of the pollutants by the microorganisms inherent to the compost. After resuming daily biofilter operation, the required times for biochemical reaction to dominate the initial adsorption step was observed to be 2.5 and 1 h, respectively, for toluene and hexane. The maximum elimination capacity due to the biological step was found to be 61.6 g m?3 h?1. The results from this study showed the effectiveness of the biofilter to handle mixtures of gas-phase pollutants, subjected to regular intermittent operations, thus proving their worthiness for industrial use.  相似文献   

19.
On the Metropolitan Expressway in Tokyo, a tank car exploded because it was carrying hydrogen peroxide (H2O2) in a compartment in which copper chloride (CuCl2) remained. Although the main cause of the accident was trivial, the background on the accident suggested that an induction period in the reaction led to a mistake. This report describes the experimental investigation of the catalytic ability of CuCl2, and comparing it with two other copper(II) compounds (nitrate: Cu(NO3)2; and copper sulfate: CuSO4) and three iron(III) compounds (chloride: FeCl3; nitrate: Fe(NO3)3; and sulfate: Fe2(SO4)3).The experiments were performed using a reaction calorimeter. During the experiments at 35 °C, 2×10−5 mol of copper compounds slowly reacted with H2O2 and generated a precipitate. The iron compounds allowed the hydrogen peroxide to violently decompose. A 1×10−4 mol solution of CuCl2, however, produced a violent decomposition at 35 °C. At 15 °C, a moderate heat release occurred.Based on these results, the concentration and temperature dependence of the catalytic ability of CuCl2 were postulated to contribute to the induction period observed in the accident.  相似文献   

20.
The feasibility of using endpoint pH control to achieve stable partial nitritation (PN) in an SBR for landfill leachate treatment was investigated. By imposing a fixed-time anoxia followed by variable-time aeration in an SBR cycle, successful partial nitritation was maintained for 182 days at a nitrogen loading rate of 0.30–0.89 kg/m3/day. The effluent NO2-N/NH4+-N ratio and the effluent NO3-N concentration were 1.30 ± 0.22 and 16 ± 9 mg/L, respectively. High free ammonia (FA) and low dissolved oxygen (DO) concentrations were inhibition factors of nitrate formation. The termination of aeration at a suitable endpoint pH was the key to achieve an effluent NO2-N/NH4+-N ratio close to the stoichiometric value. This endpoint pH control strategy represents practical potentials in the engineered application of combined PN–ANAMMOX processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号