首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微波强化内电解降解活性艳红X-3B协同作用分析   总被引:2,自引:0,他引:2  
研究了微波强化内电解降解活性艳红X-3B的协同作用。分析了微波诱导铁、炭等离子体的产生,评价了微波等离子体对活性艳红X-3B的降解能力及降解产物的紫外光谱,比较了常规内电解和微波强化内电解降解产物的红外光谱特征,并对微波强化反应前后的铁屑和活性炭进行扫描电镜检测,结果表明:微波强化内电解的降解作用主要来源于微波等离子体的直接氧化及其协同对铁、炭填料的高效再生。  相似文献   

2.
采用镀铜铁内电解法对甲基橙染料废水进行了降解脱色研究,考察了pH、铁屑投加量、反应时间、初始浓度对脱色效果的影响,并对镀铜铁内电解降解甲基橙的过程进行了原位循环伏安跟踪监测。结果表明:最佳反应条件为酸性条件pH值2~4,铁屑投加量为400g/L,反应时间为100min,脱色率为96.0%;镀铜铁内电解降解甲基橙过程发生了氧化还原反应,生成了甲基橙的氧化产物与还原产物。  相似文献   

3.
铁屑内电解技术的强化方式及改进措施研究进展   总被引:6,自引:1,他引:5  
鞠峰  胡勇有 《环境科学学报》2011,31(12):2585-2594
铁屑内电解技术以铁屑为阳极牺牲材料,通过阴极活性炭的催化作用,能够廉价高效地处理生物难降解的含卤代化合物、硝基芳香族化合物、偶氮染料和高价态重金属等废水,具有良好的应用前景.本文介绍了铁屑内电解技术的反应过程和机理,总结分析了铁屑内电解过程的强化方式及其在工业废水处理方面的研究及应用情况,近年来铁屑内电解反应器和填料的...  相似文献   

4.
建立了微波无极紫外光催化氧化/内电解协同处理印染废水的新工艺。采用微波无极紫外光,以活性炭为光催化剂TiO2的载体,与外加铁屑构成内电解反应,处理分散蓝E-4R模拟废水。研究结果表明:协同工艺中主要是通过内电解过程产生的Fe3+捕获光电子来提高光催化作用的效率,而通过Fe2+催化H2O2形成光Fenton反应生成.OH的效应则较小。在曝气量为0.5 L/min、pH为5、铁屑投加量为40 g、染料初始浓度为50 mg/L时,分散蓝E-4R的脱色率和COD去除率分别达到99.56%、68.45%。  相似文献   

5.
碱性处理铬离子废水的铁屑内电解法的研究与应用   总被引:1,自引:0,他引:1  
采用电极电位理论描述了铁屑分别在酸性和碱性电解质溶液中形成原电池的原理,指出了在碱性条件下,Fe2+和Cr6+之间同样也可以发生氧化-还原反应。在铁屑内电解法处理碱性含铬废水时,处理前后可以不加任何酸、碱药剂,以彩色显像管厂含铬废水为例进行了试验,取得了满意的结果。  相似文献   

6.
铁屑微电解法处理经编厂染色废水   总被引:6,自引:0,他引:6  
祁梦兰 《环境保护》1993,(7):14-15,9
一、铁屑微电解机理当将含碳铸铁屑和惰性焦炭颗粒浸于具有传导性的电解质溶液中时,就形成无数个微小的原电池,在其作用空间构成一个电场。在电位较低的铁阳极上,铁失去电子生成Fe~(2+)进入溶液中,使电子流向碳阴极。在阴极附近,溶液中的溶解氧吸收电子生成OH~-。在偏酸性溶液中,阴极反应产生新生态[H],进而生成氢气逸出,其电极反应如下;  相似文献   

7.
复极性三维电极电解法去除表面活性剂的研究   总被引:3,自引:0,他引:3  
对复极性三维电极电解法处理阴离子表面活性剂废水进行了正交试验的研究,探讨了反应动力学及反应机理,结果表明该法是处理表面活性剂废水的有效方法。最佳的运行参数是填料为活性炭和玻璃珠体积比为2:1的混合填料,LAS初始浓度C0=250mg/L,pH=2,U=30V,t=60min,在该工况下LAS去除率可达90.6%。该法降解LAS的反应符合二级动力学。LAS的氧化降解的反应历程分为两步:LAS先被氧化降解为小分子的有机物(中间产物),接着,中间产物被无机化。经过120min的电解反应,中间产物的残留量较少。UV光谱分析证明石墨电极电解体系能够将LAS中的苯基氧化破坏。  相似文献   

8.
电化学-臭氧耦合氧化体系的氧化效能   总被引:2,自引:2,他引:0  
周琦  张蓉  王勋华  童少平  马淳安 《环境科学》2010,31(9):2080-2084
利用电化学-臭氧耦合氧化体系降解了水中的对氯苯酚,从动力学角度探讨了耦合氧化体系降解有机物的协同作用机制.结果表明,电化学与臭氧耦合氧化体系降解4-CP具有明显的协同效果,900 s后,该耦合氧化体系对4-CP和COD的去除率分别为92.7%和64.9%;而单独电解与单独臭氧氧化对上述两者去除率的之和仅有69.7%和30.1%.氧还原产物H2O2浓度和光电流的测试结果表明,电化学-臭氧耦合氧化体系的协同机制包括两部分:即臭氧在阴极表面得到电子生成臭氧负离子;溶解氧在阴极表面发生还原反应生成H2O2.以上2个因素均能有效地促进体系.OH的形成.  相似文献   

9.
铁屑-微生物协同还原去除水体中Cr(Ⅵ)研究   总被引:11,自引:7,他引:4  
汤洁  王卓行  徐新华 《环境科学》2013,34(7):2650-2657
考察了铁屑和微生物对受污染水体中Cr(Ⅵ)的还原去除能力以及Cr(Ⅵ)去除效率的影响因素,分析了反应后铁屑表面的组成以及Cr(Ⅵ)还原产物的形态特征.结果表明,铁屑-微生物协同处理对水体Cr(Ⅵ)的去除具有促进作用,在18 h内Cr(Ⅵ)去除率就可达到100%.在25~42℃范围内,温度升高有利于Cr(Ⅵ)的去除;Cr(Ⅵ)还原去除的最适宜初始pH为5.8.Cr(Ⅵ)去除效率随着铁屑投加量和微生物接种量的增大而增大,随着Cr(Ⅵ)初始浓度的增大而减小.Mn2+、Zn2+、Co2+、Cu2+和Ni2+离子对Cr(Ⅵ)的还原去除都有一定的抑制作用,其中Mn2+的影响最小,Ni2+的抑制作用最为明显.XPS分析结果显示,铁屑表面吸附和沉积了Cr元素,且有Cr(Ⅲ)和Cr(Ⅵ)两种价态;Cr2p3/2轨道处的出峰由Cr(Ⅲ)在(576.8±0.1)eV处的峰和Cr(Ⅵ)在(578.1±0.1)eV处的峰叠加而成,还原产物Cr(Ⅲ)极有可能以Cr(OH)3以及铁铬氧化水合物[FexCr1-x(OH)3]形式存在.  相似文献   

10.
利用机械厂废弃铁屑和分析纯级铁粉对受4-硝基苯胺(PNA)污染土壤的修复进行了对比研究,探讨了土壤酸度和反应温度对还原效果的影响,并对反应时间、铁屑用量和土壤含水量3个影响因素进行了优化选择.实验结果表明,在1.5g含PNA浓度约为1.3×10-5mol/g的模拟污染土样中加入100mg铁屑或铁粉和0.5mL蒸馏水,在25℃下反应4h,PNA的还原率分别为99%和76%,产物均为苯二胺(PDA);铁粉仅在偏酸性土壤中对PNA有较高还原率,铁屑则在中性或弱碱性土壤中仍能保持较好的还原效果;反应温度的变化对还原效果影响不大;正交实验结果显示反应时间对PNA的还原效果影响最大,土壤含水量次之,铁屑用量影响最小。  相似文献   

11.
苯酚在氯离子体系中的电化学氧化研究   总被引:4,自引:1,他引:4  
研究了用Ti/RuO2-IrO2三元电极作阳极电解处理人工合成苯酚废水时Cl-初始浓度对处理效果的影响。结果表明,在一定的电解时间范围内苯酚在阳极上的电化学氧化符合一级动力学关系;废水中Cl-的初始浓度越大,苯酚完全被电化学氧化所需的时间也越短,其表观速度常数越大,电解中间体的生成和降解速率也越大。采用HPLC、GC/MS等方法鉴定出苯酚在Cl-体系下降解的中间产物主要有4-氯苯酚,1-氯苯酚,2,4-二氯苯酚,2,6二氯苯酚,2,4,6-三氯苯酚、各种短链脂肪酸及氯代醇等;最终产物是CO2、CHCl2和CHCl3。依此推导出了苯酚在Cl-体系下电化学降解的途径。  相似文献   

12.
针对Fe/Ni、Fe/Pd双金属成本高,疏水性较差的问题,采用改性纳米Fe/Cu双金属还原水中2,4-二氯酚(2,4-DCP),考察了铜质量比(ω(Cu))对Fe/Cu还原降解2,4-DCP效果的影响,结果表明:反应进行到80 h时,ω(Cu)=10%的Fe/Cu还原效果最佳,对2,4-DCP的去除率接近100%,中间产物4-氯酚(4-CP)也基本转化为终产物苯酚(CA),CA产率达91.8%。还原通过2种途径进行:(1)2,4-DCP先被还原脱去一个氯生成中间产物4-CP,随着反应进行再被脱去一个氯生成CA;(2)2,4-DCP被直接脱去2个氯生成终产物CA。XRD分析表明:反应后Fe/Cu中的Fe~0被氧化为Fe_3O_4和Fe_2O_3,Cu~0被氧化为CuO。  相似文献   

13.
转鼓式内电解装置处理水中酸性橙Ⅱ染料   总被引:3,自引:1,他引:3  
设计制作了转鼓式内电解反应装置,将铁屑与活性炭按体积比为1:1混匀后装填在转鼓内,对偶氮染料酸性橙Ⅱ(AOⅡ)进行降解实验,考察了溶液pH、转鼓转速和溶液浓度对AOⅡ降解过程的影响.结果表明,AOⅡ降解过程符合准一级动力学方程,酸性条件有利于AOⅡ的降解,转鼓转速过快和溶液浓度过高则不利于AOⅡ的降解.解决了铁炭床长时间运行板结结块的问题.AOⅡ分子在转鼓式内电解的作用下,其可见光和紫外光区的特征吸收峰逐渐降低直至消失,并新生成更容易生物降解的对氨基苯磺酸盐.  相似文献   

14.
利用对硝基苯酚制备模拟含酚废水,同时用镀铜铁屑作为电极对其进行降解,通过动电位扫描研究表明:镀铜铁屑对对硝基苯酚具有明显的催化氧化性,相对于单纯镀铜铁内电解法降解对硝基苯酚的效果更加明显,其降解过程符合假一级反应动力学方程;电流对降解效率影响比较大,随着电流密度的增大,对对硝基苯酚的去除率越高。该方法利用废弃铁屑处理废水具备循环经济概念和经济适用性。  相似文献   

15.
电解对氯苯酚稀水溶液中脱氯降解机理研究   总被引:6,自引:0,他引:6       下载免费PDF全文
利用石墨电极进行了多种条件下对氯苯酚水溶液的电解研究。研究结果表明,CODCr去除率和脱氯率随电压的升高呈先升高后下降的趋势、随对氯苯酚质量浓度的升高呈指数下降、随溶液pH的升高而升高。碱性条件下电解效果明显优于中性和酸性条件。在电压为10V,pH≈12,电解100mg L的对氯苯酚溶液2h后,CODCr去除率可达52 94%,脱氯率达52 8%。由脉冲辐解瞬态吸收光谱可知,中性、酸性条件下降解机制均为OH·自由基的作用,经过瞬态分子OH-adducts(OH加合物)的中间产物进一步氧化降解;碱性条件下通过OH·自由基和对氯苯酚氧基负离子的阳极直接失电子氧化作用2种降解机制,经过瞬态分子氯代酚氧自由基中间产物氧化降解对氯苯酚,产物分析结果显示生成了对苯二酚和苯醌等中间产物。   相似文献   

16.
研究了邻苯二甲酸二甲酯在臭氧氧化和二氧化钛光催化氧化两种条件下的氧化降解历程。采用胶束电动毛细管色谱技术对邻苯二甲酸二甲酯降解反应的中间产物和终产物进行跟踪分析。初步认为 ,臭氧氧化邻苯二甲酸二甲酯时 ,首先是侧链反应 ,生成邻苯二甲酸 ,然后再进一步氧化降解。而TiO2 光催化氧化时 ,则为自由基直接攻击苯环 ,开环生成链状化合物 ,最终降解为CO2 和H2 O。  相似文献   

17.
在微电解接触氧化系统中,研究了2-氯酚的降解特性和机理。在酸性溶液中,2-氯酚的降解效率比其在中性和碱性溶液的高。向其中加入活性炭,由于表面催化的作用使得2-氯酚更易降解。溶液中的溶解氧参与电极反应并促进2-氯酚的降解。降解产物有1,2-苯二酚、丙三醇、草酸和乙酸。通过对中间产物的分析,提出了2-氯酚可能的降解途径。  相似文献   

18.
零价铁-过二硫酸盐连续运行体系去除水中硝基苯   总被引:2,自引:1,他引:1  
水中硝基苯(NB)的高毒性对人体健康具有极大的危害,因此,本文建立了零价铁-过二硫酸盐(Fe0-PS)连续运行体系以降解水中NB.研究结果表明,单独Fe0柱可还原降解NB,Fe0对不同浓度NB的还原效果均较好,随着流速的减慢及初始pH的降低,NB还原效果变好;但还原体系中总有机碳(TOC)基本没有去除,只是生成了中间产物苯胺(AN).Fe0-PS联合体系中,随着PS的投加,产生的Fe2+活化PS,发生了类Fenton反应,从而使还原产物AN得以氧化降解,TOC去除率可达54.8%;随着Fe0填充量的增加,氧化产物Fe2+随之增加,还原产物AN随之减少.可见,Fe0-PS连续运行体系,以Fe2+为媒介巧妙结合还原与氧化作用,能有效去除NB.  相似文献   

19.
陈成  何欢  杨绍贵  孙成 《中国环境科学》2018,38(7):2512-2519
采用超声辐射沉淀-氧化法制备了纳米催化剂NiO,用XRD、XPS、BET和SEM等方法对其进行了表征.构建了微波-NiO催化反应体系,考察了该体系对DMP的去除效率及影响因素,并利用GC/MS、LC/MS鉴定降解产物,提出了可能的降解机理.结果表明:微波诱导NiO催化氧化技术是降解DMP的有效方法,在微波(750W)诱导NiO(0.4mg/L)催化降解体系中,15min内10mg/L DMP的去除率达70%以上.降解效率受到反应体系中不同条件的影响:微波功率的增加可以提高降解效率;催化剂NiO浓度越高,降解速率越快;溶液初始pH值对DMP的降解效率影响非常大,随着pH值的增大,降解效率明显提高.通过GC/MS、LC/MS分析,反应过程中DMP的降解产物主要包括双链水解产物邻苯二甲酸以及异构化产物对苯二甲酸、单链水解产物邻甲酯苯甲酸、苯环三取代产物甲酯基-邻苯二甲酸、侧链缩合形成的双环产物和少量小分子有机酸,由此推断DMP在微波诱导NiO催化体系中的降解主要包括6个途径:水解、异构化、甲酯基反应、侧链缩合成环、羟基化和开环等.  相似文献   

20.
研究了邻苯二甲酸二甲酯在臭氧氧化和二氧化钛光催化氧化两种条件下的氧化降解历程,采用胶束电动毛细管色谱技术对邻苯二甲酸二甲酯降解反应的中间产物和终产物进行踊跃分析,初步认为,臭氧氧化邻苯二甲酸二甲酯时,首先是侧链反应,生成邻苯二甲酸,然后再进一步氧化降解,而TiO2光催化氧化时,则为自由基直接攻击苯环,开环生成链状化合物,最终降解为CO2和H2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号