首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The role of snowmelt and subsurface hydrology in determiningthe chemistry of a small headwater stream in the TurkeyLakes Watershed (TLW) was evaluated for the spring meltperiods 1992 to 1996. Spring runoff is the dominanthydrological event at the TLW each year. Processesoccurring within the snowpack during snowmelt wereprincipally responsible for the above-ground changes inchemical fluxes relative to bulk deposition (the effect ofwinter throughfall was minimal). Large changes in chemicalfluxes occurred below ground. Organic matter decomposition,weathering, nitrification, and element cycling are some ofthe more important below-ground processes that operateduring the snow accumulation and ablation season and controlthe composition of the water ultimately appearing in thestream. Maximum stream discharge was accompanied byelevated concentrations of H+, NO3 -, K+,NH4 +, DOC, Al and Mn, but reduced levels ofCa2+, Mg2+, SO4 2- and SiO2. Theconcentration-discharge relationships were consistent withwater movement through and above the forest floor duringpeak discharge, a flowpath facilitated by rapid infiltrationof meltwater and the existence of a relatively impermeablelayer in the mineral soil creating a perched water table. Averaged over the five periods of snow accumulation andablation, it was estimated that pre-melt stream flow, andwater routed through the forest floor and through the uppermineral soil contributed 9, 28 and 63%, respectively, ofthe discharge measured at the outlet of the catchment. Theforest floor contribution would be greater at peak dischargeand at higher elevations. An end-member mixing modelestimated concentrations of SO4 2-, NO3 -,Cl-, Ca2+, Mg2+, Na+ and Al that werecomparable to average values measured in the stream. Othervariables (NH4 +, H+, K+ and DOC) wereover-estimated implying retention mechanisms operatingoutside the model assumptions.  相似文献   

2.
The lateral down-slope movement of water, NO3 -, NH4 +, SO4 2-, H+ and DOC through an ablation till was examined from 1987 to 1990 for a one hectaresoil catena on a steep hillslope with uniform forest cover at the Turkey Lakes Watershed (TLW), Ontario, Canada. Natural variation in the export of nutrients from the soil profile via soil water to Little Turkey Lake was assessed in relation to nutrient distribution in soil at different topographic positions.Subsurface throughflow exhibited dramatic differences in nutrientconcentrations and fluxes with slope position, largely reflectingthat of the soil horizons through which the water passed. GreaterNO3 -, SO4 2-, and DOC concentrations in subsurface water in the upper, well-drained hillslope were a reflection of enrichment by contact with more acidic, more developed podzols, and more favorable soil physical and biological conditions for NO3 - retention in solution.Nutrient inputs to the lake were strongly influenced by increaseddown-slope transport of water, and increased SO4 2-, N, and C retention in wetter, less-developed podzolic soils that characterize lower slope positions. An understanding of water movement and soil development variation withtopographic position was required to accurately estimate nutrient budgets for steep slopes at TLW.  相似文献   

3.
The Turkey Lakes Watershed (TLW) was established in 1980 as asite for study of the ecosystem effects of acidic deposition, andsince then there has been 40% reduction in North AmericanSO2 emissions. Monitoring records for bulk deposition,shallow and deep ground water, two headwater streams and two lakeoutflows have been tested to identify statistically significantmonotonic trends. The TLW appears to be responding to decliningacidifying emissions because the most prevalent chemical trendacross sample types/stations was decreasing SO4 2-. Increasing pH was detected in four of the seven data sets, butonly the H+ decrease in bulk deposition was of a magnitudeto be an important ionic compensation for the SO4 2-decline. There is little evidence of acidification recovery inTLW waters however. Increasing alkalinity was found only in theoutflow of the penultimate lake of the basin, and in fact, deepground water and the other lake outflow had decreasing alkalinitytrends (i.e., continuing acidification). For the surface waterstations, the greater part of the ionic compensation fordeclining SO4 2- was decreasing base cations, and as aresult, these waters are probably becoming more dilute with time,although only the headwater streams exhibited decliningconductivity. Five of seven data sets had increasing dissolvedorganic carbon concentrations. Increasing NO3 - wasimportant in ground waters. Drought has strongly influencedtrends and delayed recovery by mobilizing S stored in catchmentwetlands and/or soils.  相似文献   

4.
Traunsee, a 191 m deep Alpine lake in Austria, is affected by industrial tailings from the soda and salt mining industries since 1883. In 1998 littoral water chloride concentrations ranged between 40 and 85 mg L-1 and the highest conductivity was 560 S cm-1, which is almost double as high as the values reported from the two nearby reference lakes. Chloride concentrations increased towards the location of the industrial salt and soda emission into the lake. Analogously to the chloride gradient, the epilithic littoral diatom flora changes towards the waste inlet. Shifts in the species percentages towards the emission source, a high percentage of taxa with large conductivity tolerances, the presence of a small Achnanthes minutissima Kützing morphotype, and occurrences of taxa focused at habitats of higher electrolyte content, indicate subtle impacts on the epilithic diatom flora. An analysis of the seasonal succession of the epilithic diatoms at the waste inlet compared to a lake intern reference site, reveals that only during the late summer period in 1998 the diatom assemblage at the waste inlet became significantly different, indicating seasonally restricted effects of the industrial emissions.  相似文献   

5.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO? 3), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO? 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO? 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment ‘nitrate leaching zones’ is proposed, whereby most stream NO? 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO? 3 concentrations.  相似文献   

6.
Reference Conditions of Alpine Streams: Physical Habitat and Ecology   总被引:2,自引:0,他引:2  
Natural and near-natural streams are rare in the densely populated areas of the Alps. A variety of anthropogenic impacts have resulted in the alteration and sometimes even complete destruction of these systems. Nowadays it is difficult to find un-impacted streams that are strongly needed to define the natural variability and ecosystem processes. The results from freshwater inventories and habitat assessments conducted in protected areas in Austria (Nationalpark Hohe Tauern) and Italy (Naturpark Rieserferner-Ahrn) were used to develop a comprehensive typology of Alpine streams. Three different levels were used to discriminate between the distinct stream/river types: source (glacial vs. non-glacial), hierarchy (i.e. location within the stream system) and topography/ channel morphology. Important characters defining the structure and function of these stream types are gradient, substrate composition, flow pattern and riparian vegetation. Benthic fauna assemblages from 99 near-natural stream segments in glacial and non-glacial systems demonstrated the effect of glaciation on abundance levels of the total macroinvertebrate fauna, EPT taxa (Ephemeroptera, Plecoptera and Trichoptera) and the chironomid subfamily Diamesinae in different altitudes. A general decrease of abundances with increasing altitude was found. While stream segments with a degree of glaciation >10% primarily showed reduced abundances at all altitudes, lower (<10%) or no glaciation did not influence invertebrate abundances at lower reaches. Due to the near-natural conditions of the selected stream segments, a valuable definition of reference conditions of Alpine streams based on habitat characteristics is available. As a basis it offers excellent opportunities to conduct holistic interdisciplinary studies in protected areas in the future.  相似文献   

7.
Ranunculus spp. are the dominant plants of lowland chalk stream habitats in England. The spatial variability of sediment characteristics (silt–clay, organic matter, total phosphorus and total nitrogen content) within stands of Ranunculus spp. was investigated in 12 rivers in lowland England. Variability was found to be high and there were no discernible differences between samples taken from within Ranunculus and a limited number of samples from bare substrate. For two of these rivers, comparisons were also made between reaches upstream and downstream of waste water treatment works outfalls in terms of the characteristics of the sediments within Ranunculus stands. In one river a clear increase in sediment nutrient, fine and organic material content was observed downstream but in the other there was no consistent difference. Temporal variability was considered for two rivers in the Frome catchment, Dorset, by analysing the monthly variability in sediment organic matter and silt–clay content beneath Ranunculus stands over an annual cycle of growth and die-back. Whilst a clear pattern of fine and organic material retention consistent with seasonal plant growth patterns was evident at one site, the three sites displayed different temporal patterns. This inconsistency is believed to reflect differences in sediment supply at the three sites.  相似文献   

8.
In 1989, a watershed acidification experiment was begun on the Fernow Experimental Forest in West Virginia, USA. Ammonium sulfate fertilizer (35.5 kg N ha−1 yr−1and 40.5 kg S ha−1 yr−1) was applied to a forested watershed (WS3) that supported a 20-year-old stand of eastern deciduous hardwoods. Additions of N and S are approximately twice the ambient deposition of nitrogen and sulfur in the adjacent mature forested watershed (WS4), that serves as the reference watershed for this study. Acidification of stream water and soil solution was documented, although the response was delayed, and acidification processes appeared to be driven by nitrate rather than sulfate. As a result of the acidification treatment, nitrate solution concentrations increased below all soil layers, whereas sulfate was retained by all soil layers after only a few years of the fertilization treatments, perhaps due to adsorption induced from decreasing sulfate deposition. Based on soil solution monitoring, depletion of calcium and magnesium was observed, first from the upper soil horizons and later from the lower soil horizons. Increased base cation concentrations in stream water also were documented and linked closely with high solution levels of nitrate. Significant changes in soil chemical properties were not detected after 12 years of treatment, however.  相似文献   

9.
Soil- and stream-water data from the Plynlimon research area, mid-Wales, have been used to develop a conceptual model of spatial variations in nitrogen (N) leaching within moorland catchments. Extensive peats, in both hilltop and valley locations, are considered near-complete sinks for inorganic N, but leach the most dissolved organic nitrogen (DON). Peaty mineral soils on hillslopes also retain inorganic N within upper organic horizons, but a proportion percolates into mineral horizons as nitrate (NO 3 ), either through incomplete immobilisation in the organic layer, or in water bypassing the organic soil matrix via macropores. This NO 3 reaches the stream where mineral soilwaters discharge (via matrix throughflow or pipeflow) directly to the drainage network, or via small N-enriched flush wetlands. NO 3 in hillslope waters discharging into larger valley wetlands will be removed before reaching the stream. A concept of catchment nitrate leaching zones is proposed, whereby most stream NO 3 derives from localised areas of mineral soil hillslope draining directly to the stream; the extent of these zones within a catchment may thus determine its overall susceptibility to elevated surface water NO 3 concentrations.  相似文献   

10.
Models are needed that predict both spatial and temporal improvements to ecosystems following reductions of acidifying emissions that produce `acid rain'. Logistic regression models were developed for the occurrence of fish and two fish-eatingbirds, common loons (Gavia immer) and common mergansers(Mergus merganser), using monitoring data collected onlakes across Ontario. These models were applied in the Algomaregion, including the Turkey Lakes Watershed (TLW). Using theWaterfowl Acidification Response Modeling System (WARMS), severalSO2 emission reduction scenarios were simulated, i.e. thosecontributing to measured 1982–1986 sulphate deposition levels, 1994levels (corresponding to full implementation of Canadian SO2emission reductions as stipulated in the 1991 Canada/U.S. AirQuality Agreement), 2010 levels (1994 plus full U.S. reductions),and both a 50% and a 75% further reduction beyond 2010 levels. Some habitat improvements in Algoma were predicted under the 2010scenario for all biota, but substantial increases in habitatquality, especially for mergansers, would occur only under further reductions. The TLW showed little change in chemistry orbiota, while lakes near the Montreal River were predicted toimprove substantially.  相似文献   

11.
The composition of benthic invertebrates was investigated in three Norwegian alpine watersheds during the period 1991–1997. The watersheds represented an environmental gradient in chemical factors. The Kvenna watershed was relatively well buffered, Lake Øvre Neådalsvatn was poorly buffered, but receives low inputs of atmospheric pollution while Lake Stavsvatn has low buffering capacity and receives larger inputs of acidifying components. Qualitative samples were taken in the inlet rivers, lake littoral zone, lake outlet and in the outlet rivers of the lakes for analyses of species composition. In Ø. Neådalsvatn the water chemical data showed strong seasonal variations with waters of low ionic content during snowmelt and summer, while increased ion concentrations build up during winter. The time of ice break and/or water temperature rise during the growing season affected the life cycle of Siphlonurus lacustris and Parameletus chelifer. Even small changes in pH or ANC seemed to have a strong effect on Baetis rhodani. In the Kvenna watershed eight very sensitive species were found at sites with pH 6.5, Ca 1.2 mg L-1 and LAl < 10 eq L-1. Only two highly sensitive species, B. rhodani and Capnia sp. were recorded when pH was 6, concentration of calcium 0.8 mg L-1 and low labile aluminium < 10 eq L-1. None of the highly sensitive species occurred in Stavsvatn, a formerly acidified area, where LAl concentrations ranged between 25–40 eq L-1. Low ionic content and elevated concentrations of labile aluminium are suggested to exclude sensitive invertebrates in alpine lakes. Synergistic effects of dilute water and harsh climate are assumed to increase sensitivity of invertebrates to acid water. Global warming will result in higher precipitation and more snow in the west Norwegian alpine area. This will shorten the growing season, increase the amount of dilute water and consequently threaten invertebrate species living close to their tolerance limits.  相似文献   

12.
Concentrations and total quantity of cadmium (Cd), cupper (Cu),lead (Pb) and zink (Zn) were determined in biomass and soil compartments in a replicated tree species experiment with 27-yr-old stands growing on former farmland in N.E. Sweden. Sequentialextractions of soil samples were performed in order to estimate the exchangeable and an organically bound fraction of each element. The tree species included were Picea abies (L.)H. Karst., Pinus sylvestris L., Pinus contorta Dougl., Larix sibirica Ledeb., and Betula pendula Roth.Tree species influenced the rate of removal of Cu, Pb and Zn incase of stemwood harvesting, and of Cd, Cu and Zn in the case ofwhole-tree harvesting. B. pendula and P. abies had higher quantities and average concentrations of Zn in the biomass. For all species, >50% of the Zn in the stems was found in the bark. P. abies and L. sibirica had higher quantities of Cu in the biomass than the other species.P. abies and P. contorta had high quantities of Cd inthe biomass in relation to the other species. Branches and stembark contained high concentrations of Cd and Pb in relation to foliage and stemwood. Dead branches had especially high concentrations of Pb. The high accumulation rate of Zn in thebiomass of B. pendula was related to a low exchangeable amount of Zn in the A horizon. In the superficial centimeters ofthe A horizon, a depletion similar to that found for Zn was detected for Cu, whereas for Cd and Pb, no correlations were found between quantities of elements in the trees and element pools in the soil.  相似文献   

13.
There is considerable spatial heterogeneity in organic carbon (C), total nitrogen (N), and potentially mineralizable nitrogen (PMN) pools in the soils of the Turkey Lakes Watershed. We hypothesized that topography regulates the spatial pattern of these pools through a combination of static factors (slope, aspect and elevation), which influence radiation, temperature andmoisture conditions, and dynamic factors (catenary position,profile and planar curvature), which influence the transport ofmaterials downslope. We used multiple linear regression (MLR)and tree regression (TR) models as exploratory techniques todetermine if there was a topographic basis for the spatialpattern of the C, N and PMN pools. The MLR and TR modelspredicted similar integrated totals (i.e., within 5% of eachother) but dissimilar spatial patterns of the pools. For thecombined litter, fibric and hemic layer, the MLR models explaineda significant portion of the variance (R2 = 0.38, 0.23 and0.28 for C, N and PMN, respectively), however, the residuals werelarge and biased (the smallest contents were over-predicted andthe largest contents were under-predicted). The TR models (9-branch), in contrast, explained a greater portion of the variance (R2 = 0.75, 0.67 and 0.62 for C, N and PMN, respectively) and the residuals were smaller and unbiased. Based on our sampling strategy, the models suggested that static factors were most important in predicting the spatial pattern of the nutrient pools. However, a nested sampling strategy that included scales where both static (among hillslopes) and dynamic (within hillslope) factors result in a systematic variation in soil nutrient pools may have improvedthe predictive ability of the models.  相似文献   

14.
We investigated the carbon, nitrogen and phosphorus content inthe seston and the zooplankton of a high-mountain lake duringthree years of contrasting physical and chemical conditions.Carbon in seston was ten times higher in 1995 than in 1996 and1997. Phosphorus content in seston was variable for the studyperiod, increasing gradually towards late summer in 1995, butpeaking abruptly in 1996 and 1997, reflecting atmosphericdepositions. Seston C:P were high and did not fit any definitepattern in 1995, and were particularly low after the thaw, increasing towards mid-summer in 1996 and 1997. As the seasonprogressed, major decreases in these ratios occurred coincidingwith important atmospheric inputs in the lake area. ZooplanktonN:P and C:P were negatively associated to the appearance ofrotifers and copepod nauplii in 1995, but positively correlatedto the ontogenetic development of the most abundant species,Mixodiaptomus laciniatus, in 1996. Seasonal variations inzooplankton N:P and C:P ratios showed limited interannual, butlarge intraannual variability. The comparison between the bulkcarbon in seston and zooplankton demands for this elementindicated that zooplankton were above food-quantity thresholdsfor maximum growth in 1995, 1996 and mid-season of 1997,therefore suffering only from food-quantity constraints afterthe thaw (nauplii dominance) and towards late season (adultdominance) in the latter year. The high C:P ratios in sestonrelative to zooplankton in 1995 imply that the zooplankton mayhave faced severe food-quality constraints (in terms ofphosphorus) during this year. Differences between bulkzooplankton and seston elemental nutrients are also discussed inrelation to the competitive abilities of species, andparticularly of Daphnia.  相似文献   

15.
Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long‐term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long‐term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF‐effluent control located upstream from the outfall, three downstream effluent‐impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2‐km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in‐stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater‐derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo‐persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed. ©2016 Wiley Periodicals, Inc.  相似文献   

16.
Traunsee is a deep oligotrophic lake in Austria characterised by an artificial enrichment of chloride in the hypolimnion (up to 170 mg L-1) caused by waste disposal of soda and salt industries. Protists were collected monthly over one year, observed alive and after Quantitative Protargol Staining (ciliates) or via epifluorescence microscopy (heterotrophic flagellates). Three sites within the lake (0–40 m depths) were compared to deeper water layers from 60–160 m depths where chloride concentrations and conductivity were increased. In addition, we observed the protozooplankton of two neighbouring lakes, i.e. reference systems, during one sampling occasion. In Traunsee the abundance of ciliates was low (200–36 600 cells L-1) in contrast to high species diversity (at least 60 different species; HS = 2.6) throughout the year. The main pelagic species in terms of abundance were small oligotrichs and prostomatids like Rimostrombidium brachykinetum/hyalinum, Balanion planctonicum and Urotricha spp. throughout the investigation period. Among free-living heterotrophic flagellates, which occurred at densities of 40–2800 cells mL-1, small morphotypes dominated in the pelagial. No differences at the community level between the three lakes could be observed and pelagic ciliates and flagellates seemed not to be affected by increased chloride concentrations or by enhanced conductivity.  相似文献   

17.
The abundance and photosynthetic activity ofpicocyanobacteria in the oligotrophic alpine lake Traunseewere measured at a station located close to the outlet ofindustrial soda waste and at a mid-lake reference stationduring spring, 1999 through to autumn, 2000.Picocyanobacterial numbers measured by flow cytometry inTraunsee (0.7–13.2 × 104 ml-1) were comparable tothose of other oligotrophic lakes, and there was nosignificant difference between the contaminated and thereference sampling location. Picoplankton (<2 m)photosynthetic rates measured in vitro by the 14C-technique were significantly reduced at the contaminated siterelative to the reference station at low photosyntheticallyavailable radiation (10 E m-2 s-1), while nodifference between these two stations was found at moderatelyhigh light intensity (100 E m-2 s-1). Theinvestigation was complemented by laboratory experiments withcultured picocyanobacteria. Three Synechococcus spp.strains were exposed to water taken from either of the twoTraunsee stations and from a control station located inneighbouring Attersee. Cell-specific photosynthetic activitymeasured by 4-h in vitro incubations revealed no significantdifference among the three stations investigated. Growthrates of the same three Synechococcus spp. strains weremeasured by flow cytometry over several days in thelaboratory. One strain, in particular, was sensitive to watertaken from the contaminated site; growth rate of this strainwas significantly reduced, relative to when exposed to watertaken from the reference station. Taken together, our resultsdemonstrate that picocyanobacteria are highly sensitivebioindicators of contaminant stress. The overall impact ofthe emissions from the industrial outlet on thepicocyanobacteria was, however, relatively minor.  相似文献   

18.
The influence of industrial tailings on the biological integrity of the phytoplankton was assessed from annual measurements of photosynthetic rates in the alpine lake Traunsee. The mean annual integral production of 21 mmol C m-2 d-1 corresponded to the oligotrophic nature of the lake. Effects of effluents were tested by comparing photosynthesis at a station close to the industrial outlet (EB) and at a reference site with a maximum depth of 190 m (VI). Between-site optical properties (vertical attenuation coefficient, euphotic depth) were statistically significant different. The euphotic zone at the impacted station was on average 2 m shallower than at the reference site, owing to turbidity emanating from the industrial plant. The adaptation to low light intensities by the algal community at this station was evident from a high maximum light utilisation coefficient (* at low light saturation (E K). Algae at the deep reference site were photosynthetically less efficient but adapted to high light intensities. Photosynthetic adaptation to different light climates in the euphotic zone without significant quantitative biomass alterations at the impacted site gave a clear signature of biological integrity of the phytoplankton in the oligotrophic Traunsee.  相似文献   

19.
Ecosystem dynamics in high-elevation watersheds are extremely sensitive to changes in chemical, energy, and water fluxes. Here we report information on yields of dissolved organic C, N, and P for the 1999 snowmelt runoff season from three high-elevation catchments in the Colorado Front Range, U.S.A.: Green Lake 4 (GL4) and Albion townsite (ALB) on North Boulder Creek and the Saddle Stream (SS), a tributary catchment dominated by alpine tundra. Dissolved organic carbon (DOC) concentrations in stream waters ranged from <1 to 10 mg C L-1, with the highest values occurring at the SS site. Dissolved organic nitrogen (DON) concentrations ranged from below detection limits to 0.28 mg N L-1 and were again highest at the tundra-dominatedsite. Dissolved organic phosphorus (DOP) concentrations were at or near detection limits throughout the season in all three catchments indicating a strong terrestrial retention of P. OnlyDOC showed a significant relationship to discharge. Yields of DOC in the three catchments ranged from 10.6 to 11.8 kg C ha-1 while yields of DON and DOP ranged from 0.32 to 0.41 and 0.02 to 0.08 kg ha-1, respectively. The relatively highyield of organic N and P relative to C from the highest elevationsite (GL4) was somewhat surprising and points to either: (1) a source of dissolved organic material (DOM) in the upper reaches of the catchment that is enriched in these nutrients or (2) theselective uptake and processing of organic N and P downstream ofthe sampling site. Additionally, seasonal changes in the relativeimportance of DOM precursor materials appear to result in changesin the N content of DOM at both the GL4 and ALB sites.  相似文献   

20.
Microorganisms which can assimilate a new polyester synthesized from polyethylene glycol (PEG) as a dihydroxyl compound and phthalic acid as a dicarboxyl compound were isolated from soils by enrichment culture techniques. Two cultures, K and N, were obtained: Culture K grew on PEG 4000 polyester and culture N assimilated PEG 6000 polyester. Each culture included two bacteria indispensable for the degradation of polyesters: bacteria K1 and K2 for PEG 4000 polyester-utilizing culture K and bacteria N1 and N2 for PEG 6000 polyester-utilizing culture N. Bacteria K2 and N2 were responsible for the hydrolysis of ester bonds in a polyester and both were identified as the same species,Comamonas acidovorans. Bacteria K1 and N6 could assimilate PEG as a sole carbon and energy source. Both are Gram-negative, non-spore-forming rods and resembled each other on their colony characteristics, although strain K1 could not grow on PEG 6000.C. acidovorans N2 (K2) grew on dialkyl phthalates (C2–C4) and phthalate and tributyrin, but not on PEG, diphthalic PEG, and PEG phthalate polyesters. Their culture supernatant and washed cells hydrolyzed PEG (400–20,000) phthalate and sebacate polyesters.C. acidovorans had higher esterase activity toward PEG phthalate, isophthalate, and terephthalate polyesters than known esterase and lipases. The esterase seemed to be an extracellular one and attached to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号