首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work an attempt to combine the results of lichen mapping with the quantitative levels of certain trace elements in Hypogymnia physodes (L.) Nyl. collected on a national scale is presented. An Index of Atmospheric Purity (IAP) was calculated using a simple method of mapping lichens based on the assessment of the cover and frequency of crustose, foliose and fruticose lichens on different tree species. For determination of trace elements in lichens k0-instrumental neutron activation analysis was used. From the IAP results it can be concluded that the epiphytic lichen flora look quite poor with more than 70% of the territory in the fourth and third classes, which represent highly polluted and moderately polluted air. By comparing IAP results with elemental levels in H. physodes using multivariate statistical methods it was found that the elemental levels do not have a direct negative effect on the diversity of lichens but can help in identification of the type of possible pollution sources and their origin.  相似文献   

2.
Two country-wide surveys using epiphytic lichens as biomonitors of atmospheric pollution carried out during 2000 and 2001 in Slovenia were compared with surveys in 1991 and 1992. In the first survey, epiphytic lichen cover was studied in more than 500 plots of the 4 x 4 km national grid carried out within the framework of forest decline inventories. In the second survey, the epiphytic lichen Hypogymnia physodes (L.) Nyl., was collected on a 16 x 16 km bioindication grid and analysed for S, N, As, Br, Ce, Cd, Cr, K, La, Mo, Rb, Sb, Th, U and Zn contents. Only 'forested area' sampling points were included in the present study. Lichen cover was low, with about 70% of plots with less than 10% foliose lichen cover. No relationship was found between Hypogymnia trace element, N and S concentrations and foliose epiphytic lichen cover.  相似文献   

3.
Samples of the moss Hypnum cupressiforme and the epiphytic lichen Parmelia, caperata were collected during the summer of 1999 in an area (Colline Metallifere, central Italy) intensively exploited in the past for metals (Cu, Fe, Pb, Zn) and currently for geothermal resources. Lichens were more sensitive than mosses to emissions of S compounds near geothermal fields and abandoned sulphide ore smelting plants. Comparison of elemental compositions of the two cryptogamic species from the same sampling sites showed significantly higher concentrations of lithophile elements (Al, Cr, Fe, Mn, Ni, Ti) in the moss and atmophile elements (Hg, Cd. Pb, Cu, V, Zn) in the lichen. Patterns of bioaccumulation of elements throughout the study area were quite similar for widespread pollutants such as S, B, As, Zn, Cr and Ni, but the lichen and the moss showed different distribution patterns of Hg, Cd and other elements subject to long-range atmospheric transport. These results are due to differences in the morphology and ecophysiology of mosses and lichens and indicate that these organisms cannot be used interchangeably as biomonitors of metals in areas with mineral deposits.  相似文献   

4.
Effects of high ammonia emissions and nitrogen deposition were investigated on lichens around a pig stockfarm (ca. 7,000 animals) in central Italy. Four sites were selected along a transect at 200, 400, 1000 and 2500 m from the stockfarm, the diversity of epiphytic lichens was measured and transplanted thalli of Xanthoria parietina and Flavoparmelia caperata exposed, together with passive NH3 (diffusion tubes) samplers. Ammonia dramatically decreased from the centre of the stockfarm to the sampled sites, where it was correlated with bark pH. Total lichen diversity was not associated with either NH3 concentrations or bark pH, but the diversity of strictly nitrophytic species was highly correlated with both parameters. Physconia grisea was the best indicator species for NH3 pollution. Total N accumulated in X. parietina and F. caperata was correlated with NH3 concentrations.  相似文献   

5.
In June of 1997, several thalli of the lichen species Alectoria sarmentosa were transplanted from a remote area (Bonavista) to an urban area (St John's) on the island of Newfoundland, Canada. The purpose was to assess the response of these epiphytic lichens to a change in the level of atmospheric sulphur pollution as measured by sulphur concentration and isotopic composition. The dominant source of atmospheric sulphur in the Bonavista area is sea spray, therefore, lichens growing there have relatively high sulphur isotopic compositions and low concentrations (approximately + 15 per/thousand, 250 ppm). Atmospheric sulphur in the St John's area is dominated by anthropogenic sources, primarily oil burning. Lichens in this area have lower isotopic compositions and higher concentrations (approximately + 6 per thousand, 500 ppm). The transplanted lichens were monitored monthly for a period of 1 year. In all experiments the sulphur isotopic composition decreased and the sulphur concentration increased linearly. It is estimated that, within 18 months, transplanted A. sarmentosa would be indistinguishable from the same species naturally growing in the transplant site, both in terms of sulphur concentration and isotopic composition.  相似文献   

6.
To study the pH preference of epiphytic lichens, the bark pH of Fraxinus, Tilia, Quercus and Ulmus trees in an urban environment was measured using a flat surface electrode. The total number of trees was 253. A survey was made of the lichens in a 40 × 40 cm quadrat surrounding the pH measurement point. Our data analysis using multivariate and univariate statistical techniques indicates that the tree species is the most important factor influencing lichen colonisation, and that bark pH alone is of less importance. We hypothesize that the changed pollution climate, with strong decreases in both sulphur dioxide and ammonia concentrations over the past two decades and a concomitant general increase in bark pH, has made epiphytes less sensitive to pH.  相似文献   

7.
This study investigated the influence of angular exposure and distance from vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements in a town of central Italy. An Index of Lichen Diversity (ILD) was calculated on the street-facing and the opposite side of road-lining trees and in a urban park 250 m away, and the content of selected trace elements (Al, Ba, Ce, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, and Zn) was determined in samples of the lichen Punctelia borreri (Sm.) Krog growing on tree bark, both on the exposed and opposite sides. ILD increases with distance from traffic emissions. However, at the site with vehicle traffic, non-nitrophilous lichens decreased while nitrophilous ones increased. The concentration of the traffic-related elements Ba, Cr, Cu, Mn, Sb, and Zn accumulated in thalli of P. borreri was higher on roadside trees than in trees from the urban park. ILD was not affected by the angular exposure to the road and the bioaccumulation of traffic-related elements was similar in lichens from the side of the bole exposed to traffic emissions and particulate resuspension and from the opposite side. The angular exposure in respect to the traffic source does not influence trace element accumulation. These results are important when using lichens for biomonitoring purposes, both for planning future studies and for the reliability of the interpretation of past surveys that do not report information about the angular exposure of the collected lichen material.  相似文献   

8.
The iron content was studied in the epiphytic lichens Hypogymnia physodes (L.) Nyl. and Pseudevernia furfuracea (L.) Zopf, in the terricolous lichens Cladina sp. and Peltigera aphthosa (L.) Willd., and in pine bark collected from 31 sites in Finland. There appeared to be differences between lichen species, epiphytes having generally higher concentrations. The iron content of H. physodes was highly significantly correlated (p<0.001) with its sulphur content, reflecting the relations of these elements in precipitation. The highly significant correlations between the iron and titanium contents indicated differences of the phorophytes. The iron/sulphur ratio of H. physodes on pine was 1.3 and on birch 1.4 and iron/titanium ratios were 10.4 and 11.3 respectively. The iron content of Cladina sp. showed highly significant parallel correlations (p<0.001) with its sulphur and titanium contents. The iron/titanium ratio decreased from 9.6 to 8.2 when the iron content increased by 95%, the sulphur content being equal. The iron/titanium ratio of Cladina sp. was nearly identical to that of P. furfuracea. The relation between iron and sulphur, and the fraction of soluble and insoluble iron in precipitation versus lichens and pine bark were considered. Special attention was paid in the discussion to differences in substrate: pine and birch bark for H. physodes, and soil for Cladina sp.  相似文献   

9.
The hypothesis was tested that the lichen substances produced by the epiphytic lichen Hypogymnia physodes control the intracellular uptake of divalent transition metals. Incubating lichen thalli with and without their natural content of lichen substances with metal solutions showed that the lichen substances of H. physodes selectively inhibit the uptake of Cu(2+) and Mn(2+), but not of Fe(2+) and Zn(2+). Such behavior is ecologically beneficial, as ambient concentrations of Cu(2+) and Mn(2+) in precipitation and bark are known to limit the abundance of H. physodes, whereas limiting effects of Fe(2+) or Zn(2+) have never been found. This suggests that increasing the Cu(2+) and Mn(2+) tolerance stimulated the evolution of lichen substances in H. physodes. The depsidone physodalic acid is apparently most effective at reducing Cu(2+) and Mn(2+) uptake among the seven lichen substances produced by H. physodes. Probably lichen substances play a general role in the metal homeostasis of lichens.  相似文献   

10.
Phosphate refineries are point sources for atmospheric Cr, Cd, Zn and P. Concentrations of these and other elements were determined in the lichen Rhizoplaca melanophthalma (Ram.) Leuck. and Poelt in relation to distance and direction from phosphate refineries northwest of Pocatello, Idaho. Elemental concentrations in lichens collected were measured using a multi-element Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Linear regression analysis revealed that concentrations of Cd, Cr, Zn, and P were negatively correlated with distance from the refineries. The concentrations of the elements Cd, Zn, Ca, Mn, B, and Pb were significantly different among four transects in different directions from the pollution source. Analysis of covariance indicated significant differences in concentrations of Cd, Cr, Zn, P, Cu, Ca, Mg, and K in lichens as a function of distance and direction from the pollution source. These results indicate that this lichen species may be used to determine deposition patterns of air pollutants in semi-arid environments.  相似文献   

11.
The objective of this work was to determine the impact of neighbourhood land-cover in epiphytic lichen diversity. We used geostatistics to analyse the spatial structure of lichen-indicators (number of lichen species and Lichen Diversity Value) and correlate them to land-cover considering different distances from the observed data. The results showed that lichen diversity was influenced by different environmental factors that act in the same territory but impact lichens at different distances from the source. The differences in the distance of influence of the several land-cover types seem to be related to the size of pollutants/particles that predominantly are dispersed by each land-cover type. We also showed that a local scale of analysis gives a deeper insight into the understanding of lichen richness and abundance in the region. This work highlighted the importance of a multiple spatial scale of analysis to deeply interpret the relation between lichen diversity and the underling environmental factors.  相似文献   

12.
The sulphur isotope composition of the epiphytic lichens, Hypogymnia physodes (L.) Nyl and Pseudevernia furfuracea (L.) Zopf, of the terricolous lichens, Cladina sp. and Peltigera aphthosa (L.) Willd., and of pine bark, at 31 sites in Finland, appeared to be dependent on lichen and tree species. The negative correlation of sulphur isotope composition with sulphur content was highly significant (P<0.001) in H. physodes and significant (P<0.01) in Pseudevernia furfuracea and Peltigera aphthosa. No correlation between the sulphur isotope composition and sulphur content was found for Cladina sp. and pine bark. The sulphur isotope compositions displayed statistically significant regional variation from south to north. Microenvironmental factors were considered, including phorophyte species and the chemical form of sulphur.  相似文献   

13.
This work provided additional information for a better interpretation of lichen diversity values in biomonitoring studies of air pollution. The effects of 12 predictive variables were estimated for the Genova province (NW Italy) by means of a non-parametric model. The diversity of epiphytic lichens was strictly correlated with mean annual rainfall and mean annual temperature. Different variables were found to affect the lichen diversity in urban vs. forested areas. In urban areas, air pollutants, mainly SO2, are still the main limiting factor, even if under ameliorating conditions this relationship becomes less significant. In forested areas, harvesting and forest fires showed a predominant effect, suggesting the need to develop a more defined sampling protocol to estimate atmospheric pollution in such ecosystems.  相似文献   

14.
The concentration, enrichment factor and storage of 27 elements was examined for growing in Olympic National Park, Washington. Most element concentrations changed significantly as the moss aged. Concentrations of copper, zinc, and lead were among the lowest found to date. Crustal enrichment factors indicated many elements were initially derived from atmospheric sources. These data indicate concentrations of heavy metals in remote, unpolluted sites may be considerably lower than initially thought.Mosses have been used to monitor air pollution because they accumulate trace elements and their growth is sensitive to pollutants. and were used to monitor trace element contamination in Europe (Yale and Lloyd 1984, Goodman and Roberts 1971, Lotschert and Wardtner 1982). The older portions of tended to have higher concentrations of copper and zinc than the newer portions. Sweiboda and Kalemba (1981) used and other mosses to monitor the presence of sulfur and flourine. An ecological index of contamination was developed by Le Blanc, et al. (1974) based heavily on the presence and absence of lichen and moss species around a copper mill area in Quebec, Canada. These studies demonstrate that the chemical composition of moss tissues and changes in species abundance are sensitive to atmospheric chemical composition.  相似文献   

15.
The results of a survey aimed at providing baseline element composition of lichens from unpolluted or very low polluted areas are reported. Lichen samples collected at high elevation areas in Himalayas (Nepal), Mt. Kenya (Kenya) and the Alps (Italy) were analyzed for their trace element content, mostly by INAA, allowing for a multi-element analysis. The elemental composition of lichen samples was essentially influenced by natural occurrence, mainly airborne soil dust. However, also anthropogenic input determined by long-distance atmospheric transport of pollutants was involved for some highly volatile elements such as Br, Cd and Sb. To avoid the influence of soil contamination and air pollution, and obtain baseline concentrations to be used as reference (the "natural" elemental composition of lichens), the average of the lowest concentrations is suggested.  相似文献   

16.
Ambient airborne particulate matter (PM) in southwestern North America consists of naturally derived desert dust, plus anthropogenic inputs from several sources. Epiphytic lichens (Usnea sp.) in this region are a useful biomonitor for the airborne PM because they derive nutrients and moisture largely from incorporated atmospheric aerosols, and not by absorption from the host tree limb from which they are suspended. Using a broad-based sampling strategy from southern Chihuahua, Mexico, to northern New Mexico, USA, we show that select elemental abundance ratios and lead isotopes from epiphytic lichens are useful for distinguishing between sources of airborne PM, and for gauging anthropogenic inputs into desert ecosystems. Abundance patterns of the trace elements La, Nd, and Sm in the lichens suggest origination from continental crust, but rare earth elements display a pronounced enrichment relative to the major element Fe by a factor of about 5. This enrichment appears related to geologic weathering, aeolian transport, and grain-size biases toward trace-element-rich mineral grains in the arid setting. Using the metal Pb as an indicator of human inputs, epiphytic lichens typically show Pb enrichments by a factor of about 25–60 over typical upper crustal values. Regional-scale differences in Pb isotope ratios of these lichens relate to different pollutant sources in southwestern North America.  相似文献   

17.
In 1997 the ecological characteristics of the epiphytic species (83 lichens and two algae) of an urban area (Grenoble, France) were determined. Seven autecological indices were used to characterize the lichen ecology: illumination index, humidity index, pH of bark, nutrient status of substratum, ecological index of IAP and frequency. Six clusters (A1-A6) were defined using cluster analysis and principal component analysis. Seven environmental parameters characterizing the stations and the lichen releves were also used: elevation, parameters of artificiality (urbanization, traffic and local land use), IAP, and the percentage of nitrophytic and acidophytic species. Six clusters (B1-B6) were defined using cluster analysis and canonical correspondence analysis. Four clusters (C1-C4) were finally defined using an empirical integrated method combining the autecological and environmental parameters. This final clustering which established the status of the lichen vegetation in 1997 can be reliably used as a baseline study to effectively monitor environmental changes in this urban area.  相似文献   

18.
Within the framework of the Ev-K2-CNR research program of the Italian National Research Council a specific task project has been initiated for the identification of trace elements in lichens in remote high altitude areas. This is to evaluate the possibility of using lichens as biomonitors of trace elements of atmospheric pollution. In this preliminary study, more than 20 elements have been determined in some species of lichens collected at different altitudes (from 1300 to 5000 m) in the region of the Sagarmatha National Park (Nepal). Samples of superficial soils were also collected and analyzed to calculate the trace element enrichment factors (EF) using scandium as a normalizing element. Most of the trace elements were determined by instrumental neutron activation analysis (INAA), while lead and cadmium measurements were carried out with electrothermal atomic absorption spectroscopy (ET-AAS). The EF values as well as the elemental concentrations are reported and discussed.  相似文献   

19.
The results of a survey aimed at investigating whether NO2 and NH3 emitted by road traffic can influence lichen diversity, lichen vitality and the accumulation of nitrogen in lichen thalli are reported. For this purpose, distance from a highway in a rural environment of central Italy was regarded as the main parameter to check this hypothesis. The results of the present survey indicated that road traffic is not a relevant source of NH3. On the other hand, NO2 concentrations, although rather low, were negatively correlated with distance from the highway according to a typical logarithmic function. No association between NO2 concentrations and the diversity of epiphytic lichens was found, probably because of the low NO2 values measured. Also bark properties were not influenced by distance from the highway. Accumulation of nitrogen, reduction in the content of chlorophyll a, chlorophyll b and total carotenoids were found in transplanted thalli of Evernia prunastri, but NO2 was not responsible for these changes, which were probably caused by applications of N-based fertilizers.  相似文献   

20.
Samples of Platanus hybrida Brot. bark and Flavoparmelia caperata (L.) Hale thalli, from a clean area in northern Portugal (Bai?o), were transplanted into an exposure location at the south-western Atlantic coast, impacted by urban-industrial emissions (Sines), for a 10-month long experiment. Bark pieces were confined into nylon bags (2-mm mesh), and lichen thalli kept with their bark substrate (Pinus pinaster (Ait.) Sol.). Every two months, a double set of transplants (one for bark, one for lichens) was brought back into the laboratory, together with native samples of Evernia prunastri (L.) Ach. Following suitable cleansing and preparation procedures, field samples were put through INAA for elemental assessment. The results indicate that, regardless of signal magnitude, (1) concentrations in bark and lichen transplants are significantly correlated with atmospheric deposition for an appreciable number of elements; (2) there are a number of significant correlations between transplanted and native samples, and again between the latter and the deposition; and (3) the elements with biological patterns that follow the deposition in either transplanted or native samples (Co, V) are the very ones whose bioaccumulation seems to benefit from an alternation of wet-dry periods, which fits the precipitation record of the test site during the exposure term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号