首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science–policy interface. Similarly, boundary organizations—organizations or institutions that bridge different scales or mediate the relationship between science and policy—could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.  相似文献   

2.
Despite broad recognition of the value of social sciences and increasingly vocal calls for better engagement with the human element of conservation, the conservation social sciences remain misunderstood and underutilized in practice. The conservation social sciences can provide unique and important contributions to society's understanding of the relationships between humans and nature and to improving conservation practice and outcomes. There are 4 barriers—ideological, institutional, knowledge, and capacity—to meaningful integration of the social sciences into conservation. We provide practical guidance on overcoming these barriers to mainstream the social sciences in conservation science, practice, and policy. Broadly, we recommend fostering knowledge on the scope and contributions of the social sciences to conservation, including social scientists from the inception of interdisciplinary research projects, incorporating social science research and insights during all stages of conservation planning and implementation, building social science capacity at all scales in conservation organizations and agencies, and promoting engagement with the social sciences in and through global conservation policy‐influencing organizations. Conservation social scientists, too, need to be willing to engage with natural science knowledge and to communicate insights and recommendations clearly. We urge the conservation community to move beyond superficial engagement with the conservation social sciences. A more inclusive and integrative conservation science—one that includes the natural and social sciences—will enable more ecologically effective and socially just conservation. Better collaboration among social scientists, natural scientists, practitioners, and policy makers will facilitate a renewed and more robust conservation. Mainstreaming the conservation social sciences will facilitate the uptake of the full range of insights and contributions from these fields into conservation policy and practice.  相似文献   

3.
Conservation Planning as a Transdisciplinary Process   总被引:1,自引:0,他引:1  
Abstract: Despite substantial growth in the field of conservation planning, the speed and success with which conservation plans are converted into conservation action remains limited. This gap between science and action extends beyond conservation planning into many other applied sciences and has been linked to complexity of current societal problems, compartmentalization of knowledge and management sectors, and limited collaboration between scientists and decision makers. Transdisciplinary approaches have been proposed as a possible way to address these challenges and to bridge the gap between science and action. These approaches move beyond the bridging of disciplines to an approach in which science becomes a social process resolving problems through the participation and mutual learning of stakeholders. We explored the principles of transdisciplinarity, in light of our experiences as conservation‐planning researchers working in South Africa, to better understand what is required to make conservation planning transdisciplinary and therefore more effective. Using the transdisciplinary hierarchy of knowledge (empirical, pragmatic, normative, and purposive), we found that conservation planning has succeeded in integrating many empirical disciplines into the pragmatic stakeholder‐engaged process of strategy development and implementation. Nevertheless, challenges remain in engagement of the social sciences and in understanding the social context of implementation. Farther up this knowledge hierarchy, at the normative and purposive levels, we found that a lack of integrated land‐use planning and policies (normative) and the dominant effect of national values (purposive) that prioritize growth and development limit the effectiveness and relevance of conservation plans. The transdisciplinary hierarchy of knowledge highlighted that we need to move beyond bridging the empirical and pragmatic disciplines into the complex normative world of laws, policies, and planning and become engaged in the purposive processes of decision making, behavior change, and value transfer. Although there are indications of progress in this direction, working at the normative and purposive levels requires time, leadership, resources, skills that are absent in conservation training and practice, and new forms of recognition in systems of scientific reward and funding.  相似文献   

4.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   

5.
Many of the challenges conservation professionals face can be framed as scale mismatches. The problem of scale mismatch occurs when the planning for and implementation of conservation actions is at a scale that does not reflect the scale of the conservation problem. The challenges in conservation planning related to scale mismatch include ecosystem or ecological process transcendence of governance boundaries; limited availability of fine‐resolution data; lack of operational capacity for implementation; lack of understanding of social‐ecological system components; threats to ecological diversity that operate at diverse spatial and temporal scales; mismatch between funding and the long‐term nature of ecological processes; rate of action implementation that does not reflect the rate of change of the ecological system; lack of appropriate indicators for monitoring activities; and occurrence of ecological change at scales smaller or larger than the scale of implementation or monitoring. Not recognizing and accounting for these challenges when planning for conservation can result in actions that do not address the multiscale nature of conservation problems and that do not achieve conservation objectives. Social networks link organizations and individuals across space and time and determine the scale of conservation actions; thus, an understanding of the social networks associated with conservation planning will help determine the potential for implementing conservation actions at the required scales. Social‐network analyses can be used to explore whether these networks constrain or enable key social processes and how multiple scales of action are linked. Results of network analyses can be used to mitigate scale mismatches in assessing, planning, implementing, and monitoring conservation projects. Discordancia de Escalas, Planificación de la Conservación y el Valor del Análisis de Redes Sociales  相似文献   

6.
Abstract: Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate‐change‐induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate‐change‐related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate‐change‐induced stresses.  相似文献   

7.
Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional‐focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low‐elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step.  相似文献   

8.
Abstract: The current shortfall in effectiveness within conservation biology is illustrated by increasing interest in “evidence‐based conservation,” whose proponents have identified the need to benchmark conservation initiatives against actions that lead to proven positive effects. The effectiveness of conservation policies, approaches, and evaluation is under increasing scrutiny, and in these areas models of excellence used in business could prove valuable. Typically, conservation programs require years of effort and involve rigorous long‐term implementation processes. Successful balance of long‐term efforts alongside the achievement of short‐term goals is often compromised by management or budgetary constraints, a situation also common in commercial businesses. “Business excellence” is an approach many companies have used over the past 20 years to ensure continued success. Various business excellence evaluations have been promoted that include concepts that could be adapted and applied in conservation programs. We describe a conservation excellence model that shows how scientific processes and results can be aligned with financial and organizational measures of success. We applied the model to two well‐documented species conservation programs. In the first, the Po’ouli program, several aspects of improvement were identified, such as more authority for decision making in the field and better integration of habitat management and population recovery processes. The second example, the black‐footed ferret program, could have benefited from leadership effort to reduce bureaucracy and to encourage use of best‐practice species recovery approaches. The conservation excellence model enables greater clarity in goal setting, more‐effective identification of job roles within programs, better links between technical approaches and measures of biological success, and more‐effective use of resources. The model could improve evaluation of a conservation program's effectiveness and may be used to compare different programs, for example during reviews of project performance by sponsoring organizations.  相似文献   

9.
The establishment of protected areas is a critical strategy for conserving biodiversity. Key policy directives like the Aichi targets seek to expand protected areas to 17% of Earth's land surface, with calls by some conservation biologists for much more. However, in places such as the United States, Germany, and Australia, attempts to increase protected areas are meeting strong resistance from communities, industry groups, and governments. We examined case studies of such resistance in Victoria, Australia, Bavaria, Germany, and Florida, United States. We considered 4 ways to tackle this problem. First, broaden the case for protected areas beyond nature conservation to include economic, human health, and other benefits, and translate these into a persuasive business case for protected areas. Second, better communicate the conservation values of protected areas. This should include highlighting how many species, communities, and ecosystems have been conserved by protected areas and the counterfactual (i.e., what would have been lost without protected area establishment). Third, consider zoning of activities to ensure the maintenance of effective management. Finally, remind citizens to think about conservation when they vote, including holding politicians accountable for their environmental promises. Without tackling resistance to expanding the protected estate, it will be impossible to reach conservation targets, and this will undermine attempts to stem the global extinction crisis.  相似文献   

10.
The nature of conservation challenges can foster a reactive, rather than proactive approach to decision making. Failure to anticipate problems before they escalate results in the need for more costly and time‐consuming solutions. Proactive conservation requires forward‐looking approaches to decision making that consider possible futures without being overly constrained by the past. Strategic foresight provides a structured process for considering the most desirable future and for mapping the most efficient and effective approaches to promoting that future with tools that facilitate creative thinking. The process involves 6 steps: setting the scope, collecting inputs, analyzing signals, interpreting the information, determining how to act, and implementing the outcomes. Strategic foresight is ideal for seeking, recognizing, and realizing conservation opportunities because it explicitly encourages a broad‐minded, forward‐looking perspective on an issue. Despite its potential value, the foresight process is rarely used to address conservation issues, and previous attempts have generally failed to influence policy. We present the strategic foresight process as it can be used for proactive conservation planning, describing some of the key tools in the foresight tool kit and how they can be used to identify and exploit different types of conservation opportunities. Scanning is an important tool for collecting and organizing diverse streams of information and can be used to recognize new opportunities and those that could be created. Scenario planning explores how current trends, drivers of change, and key uncertainties might influence the future and can be used to identify barriers to opportunities. Backcasting is used to map out a path to a goal and can determine how to remove barriers to opportunities. We highlight how the foresight process was used to identify conservation opportunities during the development of a strategic plan to address climate change in New York State. The plan identified solutions that should be effective across a range of possible futures. Illustrating the application of strategic foresight to identify conservation opportunities should provide the impetus for decision makers to explore strategic foresight as a way to support more proactive conservation policy, planning, and management.  相似文献   

11.
We examined the links between the science and policy of habitat corridors to better understand how corridors can be implemented effectively. As a case study, we focused on a suite of landscape‐scale connectivity plans in tropical and subtropical Asia (Malaysia, Singapore, and Bhutan). The process of corridor designation may be more efficient if the scientific determination of optimal corridor locations and arrangement is synchronized in time with political buy‐in and establishment of policies to create corridors. Land tenure and the intactness of existing habitat in the region are also important to consider because optimal connectivity strategies may be very different if there are few, versus many, political jurisdictions (including commercial and traditional land tenures) and intact versus degraded habitat between patches. Novel financing mechanisms for corridors include bed taxes, payments for ecosystem services, and strategic forest certifications. Gaps in knowledge of effective corridor design include an understanding of how corridors, particularly those managed by local communities, can be protected from degradation and unsustainable hunting. There is a critical need for quantitative, data‐driven models that can be used to prioritize potential corridors or multicorridor networks based on their relative contributions to long‐term metacommunity persistence.  相似文献   

12.
Knowledge co‐production and boundary work offer planners a new frame for critically designing a social process that fosters collaborative implementation of resulting plans. Knowledge co‐production involves stakeholders from diverse knowledge systems working iteratively toward common vision and action. Boundary work is a means of creating permeable knowledge boundaries that satisfy the needs of multiple social groups while guarding the functional integrity of contributing knowledge systems. Resulting products are boundary objects of mutual interest that maintain coherence across all knowledge boundaries. We examined how knowledge co‐production and boundary work can bridge the gap between planning and implementation and promote cross‐sectoral cooperation. We applied these concepts to well‐established stages in regional conservation planning within a national scale conservation planning project aimed at identifying areas for conserving rivers and wetlands of South Africa and developing an institutional environment for promoting their conservation. Knowledge co‐production occurred iteratively over 4 years in interactive stake‐holder workshops that included co‐development of national freshwater conservation goals and spatial data on freshwater biodiversity and local conservation feasibility; translation of goals into quantitative inputs that were used in Marxan to select draft priority conservation areas; review of draft priority areas; and packaging of resulting map products into an atlas and implementation manual to promote application of the priority area maps in 37 different decision‐making contexts. Knowledge co‐production stimulated dialogue and negotiation and built capacity for multi‐scale implementation beyond the project. The resulting maps and information integrated diverse knowledge types of over 450 stakeholders and represented >1000 years of collective experience. The maps provided a consistent national source of information on priority conservation areas for rivers and wetlands and have been applied in 25 of the 37 use contexts since their launch just over 3 years ago. When framed as a knowledge co‐production process supported by boundary work, regional conservation plans can be developed into valuable boundary objects that offer a tangible tool for multi‐agency cooperation around conservation. Our work provides practical guidance for promoting uptake of conservation science and contributes to an evidence base on how conservation efforts can be improved.  相似文献   

13.
High costs of land in agricultural regions warrant spatial prioritization approaches to conservation that explicitly consider land prices to produce protected‐area networks that accomplish targets efficiently. However, land‐use changes in such regions and delays between plan design and implementation may render optimized plans obsolete before implementation occurs. To measure the shelf life of cost‐efficient conservation plans, we simulated a land‐acquisition and restoration initiative aimed at conserving species at risk in Canada's farmlands. We accounted for observed changes in land‐acquisition costs and in agricultural intensity based on censuses of agriculture taken from 1986 to 2011. For each year of data, we mapped costs and areas of conservation priority designated using Marxan. We compared plans to test for changes through time in the arrangement of high‐priority sites and in the total cost of each plan. For acquisition costs, we measured the savings from accounting for prices during site selection. Land‐acquisition costs and land‐use intensity generally rose over time independent of inflation (24–78%), although rates of change were heterogeneous through space and decreased in some areas. Accounting for spatial variation in land price lowered the cost of conservation plans by 1.73–13.9%, decreased the range of costs by 19–82%, and created unique solutions from which to choose. Despite the rise in plan costs over time, the high conservation priority of particular areas remained consistent. Delaying conservation in these critical areas may compromise what optimized conservation plans can achieve. In the case of Canadian farmland, rapid conservation action is cost‐effective, even with moderate levels of uncertainty in how to implement restoration goals.  相似文献   

14.
Abstract: Including both economic costs and biological benefits of sites in systematic reserve selection greatly increases cost‐efficiency. Nevertheless, limited funding generally forces conservation planners to choose which data to focus the most resources on; therefore, the relative importance of different types of data must be carefully assessed. We investigated the relative importance of including information about costs and benefits for 3 different commonly used conservation goals: 2 in which biological benefits were measured per site (species number and conservation value scores) and 1 in which benefits were measured on the basis of site complementarity (total species number in the reserve network). For each goal, we used site‐selection models with data on benefits only, costs only, and benefits and costs together, and we compared the efficiency of each model. Costs were more important to include than benefits for the goals in which benefits were measured per site. By contrast, for the complementarity‐based goal, benefits were more important to include. To understand this pattern, we compared the variability in benefits and in costs for each goal. By comparing the best and the worst possible selection of sites with regard to costs alone and benefits alone for each conservation goal, we introduced a simple and consistent variability measure that is applicable to all kinds of reserve‐selection situations. In our study, benefit variability depended strongly on how the conservation goal was formulated and was largest for the complementarity‐based conservation goal. We argue that from a cost‐efficiency point of view, most resources should be spent on collecting the most variable type of data for the conservation goal at hand.  相似文献   

15.
Large‐scale change in human values and associated behavior change is believed by some to be the ultimate solution to achieve global biodiversity conservation. Yet little is known about the dynamics of values. We contribute to this area of inquiry by examining the trajectory of values affecting views of wildlife in North America. Using data from a 19‐state study in the United States and global data from the Schwartz Value Survey, we explored questions of value persistence and change and the nature of attitudinal responses regarding wildlife conservation issues. We found support, based on subjects’ ancestry, for the supposition that domination is a prevalent American value orientation toward wildlife that has origins in European Judeo‐Christian traditions. Independent of that effect, we also found indications of change. Modernization is contributing to a shift from domination to mutualism value orientations, which is fostering attitudes less centered on human interests and seemingly more consistent with a biocentric philosophy. Our findings suggest that if value shift could be achieved in a purposeful way, then significant and widespread behavior change believed necessary for long‐term conservation success may indeed be possible. In particular, greater emphasis on mutualism values may help provide the context for more collaborative approaches to support future conservation efforts. However, given the societal forces at play, it is not at all clear that human‐engineered value shift is tenable. Instead of developing strategies aimed at altering values, it may be more productive to create strategies that recognize and work within the boundaries of existing values. Whereas values appear to be in a period of flux, it will be difficult to predict future trends without a better understanding of value formation and shift, particularly under conditions of rapid social‐ecological change.  相似文献   

16.
17.
Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. Una Guía para Entender la Investigación de Ciencias Sociales para las Ciencias Naturales Katie Moon  相似文献   

18.
Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long‐term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long‐term projections of climate‐change effects provide temporal context as a species‐wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas  相似文献   

19.
Rudd MA 《Conservation biology》2011,25(6):1165-1175
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future.  相似文献   

20.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号