首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   

2.
Forest degradation is arguably the greatest threat to biodiversity, ecosystem services, and rural livelihoods. Therefore, increasing understanding of how organisms respond to degradation is essential for management and conservation planning. We were motivated by the need for rapid and practical analytical tools to assess the influence of management and degradation on biodiversity and system state in areas subject to rapid environmental change. We compared bird community composition and size in managed (ejido, i.e., communally owned lands) and unmanaged (national park) forests in the Sierra Tarahumara region, Mexico, using multispecies occupancy models and data from a 2‐year breeding bird survey. Unmanaged sites had on average higher species occupancy and richness than managed sites. Most species were present in low numbers as indicated by lower values of detection and occupancy associated with logging‐induced degradation. Less than 10% of species had occupancy probabilities >0.5, and degradation had no positive effects on occupancy. The estimated metacommunity size of 125 exceeded previous estimates for the region, and sites with mature trees and uneven‐aged forest stand characteristics contained the highest species richness. Higher estimation uncertainty and decreases in richness and occupancy for all species, including habitat generalists, were associated with degraded young, even‐aged stands. Our findings show that multispecies occupancy methods provide tractable measures of biodiversity and system state and valuable decision support for landholders and managers. These techniques can be used to rapidly address gaps in biodiversity information, threats to biodiversity, and vulnerabilities of species of interest on a landscape level, even in degraded or fast‐changing environments. Moreover, such tools may be particularly relevant in the assessment of species richness and distribution in a wide array of habitats. Uso de Modelos de Ocupación para Múltiples Especies para Evaluar la Respuesta de las Comunidades de Aves a la Degradación de Bosques Asociada con la Tala  相似文献   

3.
Abstract: Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species’ spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected‐area site selections were derived from a rarity–complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species‐habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat‐mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space‐borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.  相似文献   

4.
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark‐monitoring data on large scales (100s–1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species‐level models had higher accuracy (? ≥ 0.69) and deviance explained (≥48%) than our order‐level model (? = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species‐specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species‐focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non‐extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs.  相似文献   

5.
Abstract: In the United States multispecies habitat conservation plans were meant to be the solution to conflicts between economic development and protection of biological diversity. Although now widely applied, questions exist concerning the scientific credibility of the conservation planning process and effectiveness of the plans. We used ants to assess performance of one of the first regional conservation plans developed in the United States, the Orange County Central‐Coastal Natural Community Conservation Plan (NCCP), in meeting its broader conservation objectives of biodiversity and ecosystem‐level protection. We collected pitfall data on ants for over 3 years on 172 sites established across a network of conservation lands in coastal southern California. Although recovered native ant diversity for the study area was high, site‐occupancy models indicated the invasive and ecologically disruptive Argentine ant (Linepithema humile) was present at 29% of sites, and sites located within 200 m of urban and agricultural areas were more likely to have been invaded. Within invaded sites, native ants were largely displaced, and their median species richness declined by more than 60% compared with uninvaded sites. At the time of planning, 24% of the 15,133‐ha reserve system established by Orange County NCCP fell within 200 m of an urban or agricultural edge. With complete build out of lands surrounding the reserve, the proportion of the reserve system vulnerable to invasion will grow to 44%. Our data indicate that simply protecting designated areas from development is not enough. If habitat conservation plans are to fulfill their conservation promise of ecosystem‐level protection, a more‐integrated and systematic approach to the process of habitat conservation planning is needed.  相似文献   

6.
Abstract: Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000‐ha Grand Staircase‐Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function‐ and diversity‐based conservation‐value layers on the potential degradation layer. Different methods for ascribing conservation‐value and conservation‐priority layers all yielded strikingly similar results (r= 0.89–0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant‐community properties) and that such information can be used to prioritize conservation effort in drylands.  相似文献   

7.
Abstract: Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence–absence data derived from regional monitoring programs to develop models with both landscape and site‐level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence–absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad‐scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km2 hexagons), can increase the relevance of habitat models to multispecies conservation planning.  相似文献   

8.
Abstract: Species’ assessments must frequently be derived from opportunistic observations made by volunteers (i.e., citizen scientists). Interpretation of the resulting data to estimate population trends is plagued with problems, including teasing apart genuine population trends from variations in observation effort. We devised a way to correct for annual variation in effort when estimating trends in occupancy (species distribution) from faunal or floral databases of opportunistic observations. First, for all surveyed sites, detection histories (i.e., strings of detection–nondetection records) are generated. Within‐season replicate surveys provide information on the detectability of an occupied site. Detectability directly represents observation effort; hence, estimating detectablity means correcting for observation effort. Second, site‐occupancy models are applied directly to the detection‐history data set (i.e., without aggregation by site and year) to estimate detectability and species distribution (occupancy, i.e., the true proportion of sites where a species occurs). Site‐occupancy models also provide unbiased estimators of components of distributional change (i.e., colonization and extinction rates). We illustrate our method with data from a large citizen‐science project in Switzerland in which field ornithologists record opportunistic observations. We analyzed data collected on four species: the widespread Kingfisher (Alcedo atthis) and Sparrowhawk (Accipiter nisus) and the scarce Rock Thrush (Monticola saxatilis) and Wallcreeper (Tichodroma muraria). Our method requires that all observed species are recorded. Detectability was <1 and varied over the years. Simulations suggested some robustness, but we advocate recording complete species lists (checklists), rather than recording individual records of single species. The representation of observation effort with its effect on detectability provides a solution to the problem of differences in effort encountered when extracting trend information from haphazard observations. We expect our method is widely applicable for global biodiversity monitoring and modeling of species distributions.  相似文献   

9.
Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human‐dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long‐term conservation of tigers requires that the species be able to meet some of its life‐history needs beyond the boundaries of small protected areas and within the working landscape, including multiple‐use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km2 Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166‐km2 cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell‐scale occupancy and segment‐scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected‐area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence in some multiple‐use forests. Restrictions on human‐use in high‐quality tiger habitat in multiple‐use forests may complement existing protected areas and collectively promote the persistence of tiger populations in working landscapes.  相似文献   

10.
Designing connected landscapes is among the most widespread strategies for achieving biodiversity conservation targets. The challenge lies in simultaneously satisfying the connectivity needs of multiple species at multiple spatial scales under uncertain climate and land‐use change. To evaluate the contribution of remnant habitat fragments to the connectivity of regional habitat networks, we developed a method to integrate uncertainty in climate and land‐use change projections with the latest developments in network‐connectivity research and spatial, multipurpose conservation prioritization. We used land‐use change simulations to explore robustness of species’ habitat networks to alternative development scenarios. We applied our method to 14 vertebrate focal species of periurban Montreal, Canada. Accounting for connectivity in spatial prioritization strongly modified conservation priorities and the modified priorities were robust to uncertain climate change. Setting conservation priorities based on habitat quality and connectivity maintained a large proportion of the region's connectivity, despite anticipated habitat loss due to climate and land‐use change. The application of connectivity criteria alongside habitat‐quality criteria for protected‐area design was efficient with respect to the amount of area that needs protection and did not necessarily amplify trade‐offs among conservation criteria. Our approach and results are being applied in and around Montreal and are well suited to the design of ecological networks and green infrastructure for the conservation of biodiversity and ecosystem services in other regions, in particular regions around large cities, where connectivity is critically low.  相似文献   

11.
Abstract: Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co‐occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community‐composition data. Composition‐based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment‐based models were built with soil chemistry, moisture content, above‐ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community‐composition data were the best predictors of both the site‐specific reproductive output of sown individuals and the site‐specific abundance of existing populations. Successful community‐based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community‐based modeling at scales relevant to conservation.  相似文献   

12.
Habitat loss is the principal threat to species. How much habitat remains—and how quickly it is shrinking—are implicitly included in the way the International Union for Conservation of Nature determines a species’ risk of extinction. Many endangered species have habitats that are also fragmented to different extents. Thus, ideally, fragmentation should be quantified in a standard way in risk assessments. Although mapping fragmentation from satellite imagery is easy, efficient techniques for relating maps of remaining habitat to extinction risk are few. Purely spatial metrics from landscape ecology are hard to interpret and do not address extinction directly. Spatially explicit metapopulation models link fragmentation to extinction risk, but standard models work only at small scales. Counterintuitively, these models predict that a species in a large, contiguous habitat will fare worse than one in 2 tiny patches. This occurs because although the species in the large, contiguous habitat has a low probability of extinction, recolonization cannot occur if there are no other patches to provide colonists for a rescue effect. For 4 ecologically comparable bird species of the North Central American highland forests, we devised metapopulation models with area‐weighted self‐colonization terms; this reflected repopulation of a patch from a remnant of individuals that survived an adverse event. Use of this term gives extra weight to a patch in its own rescue effect. Species assigned least risk status were comparable in long‐term extinction risk with those ranked as threatened. This finding suggests that fragmentation has had a substantial negative effect on them that is not accounted for in their Red List category. Estimación del Riesgo de Extinción Mediante Modelos Metapoblacionales de Fragmentación a Gran Escala  相似文献   

13.
Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum‐type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat‐forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. Definición de Hábitats Críticos para Peces Arrecifales Amenazados y Endémicos Mediante un Método Multivariado  相似文献   

14.
Systematic conservation planning aims to design networks of protected areas that meet conservation goals across large landscapes. The optimal design of these conservation networks is most frequently based on the modeled habitat suitability or probability of occurrence of species, despite evidence that model predictions may not be highly correlated with species density. We hypothesized that conservation networks designed using species density distributions more efficiently conserve populations of all species considered than networks designed using probability of occurrence models. To test this hypothesis, we used the Zonation conservation prioritization algorithm to evaluate conservation network designs based on probability of occurrence versus density models for 26 land bird species in the U.S. Pacific Northwest. We assessed the efficacy of each conservation network based on predicted species densities and predicted species diversity. High‐density model Zonation rankings protected more individuals per species when networks protected the highest priority 10‐40% of the landscape. Compared with density‐based models, the occurrence‐based models protected more individuals in the lowest 50% priority areas of the landscape. The 2 approaches conserved species diversity in similar ways: predicted diversity was higher in higher priority locations in both conservation networks. We conclude that both density and probability of occurrence models can be useful for setting conservation priorities but that density‐based models are best suited for identifying the highest priority areas. Developing methods to aggregate species count data from unrelated monitoring efforts and making these data widely available through ecoinformatics portals such as the Avian Knowledge Network will enable species count data to be more widely incorporated into systematic conservation planning efforts.  相似文献   

15.
Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to‐and‐fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid‐zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation planning.  相似文献   

16.
Abstract: Crayfishes are both a highly imperiled invertebrate group as well as one that has produced many invasive species, which have negatively affected freshwater ecosystems throughout the world. We performed a trait analysis for 77 crayfishes from the southeastern United States in an attempt to understand which biological and ecological traits make these species prone to imperilment or invasion, and to predict which species may face extinction or become invasive in the future. We evaluated biological and ecological traits with principal coordinate analysis and classification trees. Invasive and imperiled crayfishes occupied different positions in multivariate trait space, although crayfishes invasive at different scales (extraregional vs. extralimital) were also distinct. Extraregional crayfishes (large, high fecundity, habitat generalists) were most distinct from imperiled crayfishes (small, low fecundity, habitat specialists), thus supporting the “two sides of the same coin” hypothesis. Correct classification rates for assignment of crayfishes as invasive or imperiled were high (70–80%), even when excluding the highly predictive but potentially confounding trait of range size (75–90%). We identified a number of species that, although not currently listed as imperiled or found outside their native range, possess many of the life‐history and ecological traits characteristic of currently invasive or imperiled taxa. Such species exhibit a high latent risk of extinction or invasion and consequently should be the focus of proactive conservation or management strategies. Our results illustrate the utility of trait‐based approaches for taxonomic groups such as invertebrates, for which detailed species‐specific data are rare and conservation resources are chronically limited.  相似文献   

17.
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy‐based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy‐based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per‐visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species. Poder de Análisis Espacialmente Explícito para el Monitoreo Basado en Ocupación del Glotón (Gulo gulo) en las Montañas Rocallosas de Estados Unidos  相似文献   

18.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   

19.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

20.
Abstract: Non‐native species can cause the loss of biological diversity (i.e., genetic, species, and ecosystem diversity) and threaten the well‐being of humans when they become invasive. In some cases, however, they can also provide conservation benefits. We examined the ways in which non‐native species currently contribute to conservation objectives. These include, for example, providing habitat or food resources to rare species, serving as functional substitutes for extinct taxa, and providing desirable ecosystem functions. We speculate that non‐native species might contribute to achieving conservation goals in the future because they may be more likely than native species to persist and provide ecosystem services in areas where climate and land use are changing rapidly and because they may evolve into new and endemic taxa. The management of non‐native species and their potential integration into conservation plans depends on how conservation goals are set in the future. A fraction of non‐native species will continue to cause biological and economic damage, and substantial uncertainty surrounds the potential future effects of all non‐native species. Nevertheless, we predict the proportion of non‐native species that are viewed as benign or even desirable will slowly increase over time as their potential contributions to society and to achieving conservation objectives become well recognized and realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号