首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m2 in San Francisco Bay, and 361 and 1153 individuals per 0.25 m2 in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded. Received: 30 March 2000 / Accepted: 21 September 2000  相似文献   

2.
This paper explores the impact of erosion and restoration measures on habitat development and on wave damping by a small salt marsh nestled alongside a dike on the Wadden island of Terschelling. The aim is to advance knowledge about the benefits and possible side-effects of salt-marsh restoration. Analysis of a time series of aerial photographs from 1944 to 2010 indicates that the salt marsh decreased steadily in size after maintenance of accretion works was terminated. In the western part of the marsh, which is accessible to sheep, vegetation is low (5–15 cm) and dominated by Salicornia europaea and by Spartina anglica. In the most intensively grazed parts, vegetation is very scarce. The eastern, inaccessible part of the salt marsh is covered by dense patches of the shrubby perennial Atriplex portulacoides and Spartina anglica (15–25 cm in height). SWAN wave models show that wave height at this location is significantly affected by the areal extent of the salt marsh as well as by the vegetation. High or dense vegetation are in the models nearly as effective in damping waves (with an initial height of 0.15 and 0.5 m) as widening the salt-marsh area by 350 m. A low density of low plants, as observed in the grazed part of the marsh, has almost no wave-damping effect. Even under conditions of sea level rise, a broader salt marsh vegetated with high plants significantly affects modelled wave height. Therefore, salt-marsh restoration is an adaptation measure worth exploring, though an array of effect types must be considered.  相似文献   

3.
Horseshoe crab spawning activity is spatially patchy within the Delaware Estuary. This study investigated the importance of geochemical and erosional factors to the selection of breeding beaches. Two sandy beaches in Cape May county, New Jersey, USA, were studied; one beach had been subjected to considerable erosion, exposing underlying peat; the second beach, less than 1 km away, had only traces of peat. Reduced sediments with high levels of hydrogen sulfide were correlated with the presence of peat, and significantly fewer crabs utilized sediments in the proximity of peat beds for reproduction. The lower spawning activity on the beach in the vicinity of exposed peat, suggests that crabs may detect, at a distance, the nature of sediments and the quality of beach for spawning activity. Active salt marsh and peat-bank sediments dominate the upper bay shore; these sediments are unsuitable, or at best marginal, for horseshoe crab reproduction. Extensive bulkheading of eroding sandy beach along several New Jersey shore communities has further restricted the availability of suitable spawning habitat, making the remaining stretches of optimal sandy beach critical to the reproductive success of this species.  相似文献   

4.
Salt marsh succession after de-embankment was monitored on the East Frisian barrier island Langeoog by investigating permanent plots. Seventy years after embankment salt marsh plants were once again influenced mainly by the tidal regime. From 2002 to 2004 the former high marsh and glycophytic vegetation died out and was replaced by species of lower salt marsh zones. Nitrophytic halophytes like Suaeda maritima, Atriplex prostrata and Artemisia maritima established first because of the high nutrient content in the soil, a direct result of former vegetation decay. With decreasing nitrogen afterwards other species became more competitive. Until 2007 Atriplex portulacoides became more dominant in the lower marsh and Elymus athericus reached dominance in areas where grazing has been abandoned in the high marsh. The dynamics in the study area is much lower than in natural marshes due to the still existing drainage system. Therefore vegetation units with low species diversity are widespread.  相似文献   

5.
Lignin-derived phenols, C/N ratios and ratios of refractory to total organic matter were used to study the sources, distribution, and diagenesis of sedimentary organic matter along estuary, river bank, and salt marsh systems. The Changjiang Estuary showed a higher signal of terrestrial organic matter at the river mouth which decreased farther offshore. The locations along the Qiantang River were affected by their adjacent surroundings, and the Andong salt marsh showed higher terrestrial organic matter signal at the upper marsh compared to the lower marsh. All studied areas showed slight increases in organic matter decomposition farther downstream and towards the sea. Study of these three different systems will improve our understanding on their ecotoxicological impact. The Changjiang Estuary had higher pollutant levels near the river mouth, which decreased farther offshore due to dilution. The midstream Qiantang River was most likely affected by pollution from their adjacent surroundings. Pollutants were likely to be accumulated in the Andong salt marsh due to the presence of marsh plants and small-sized particles. Organic pollutants were likely to be decomposed during transport along the systems. The ability of the sediments to release inorganic pollutants was determined by whether these systems were oxic or anoxic.  相似文献   

6.
The supply of freshwater to estuarine ecosystems is a critical factor in maintaining the overall health and organization of coastal marshes. Specifically along the Texas Gulf coast, the coupled effects of decreased freshwater inflows to the estuary and natural processes (e.g., precipitation, wind, and tides) can exert significant salt-stress on coastal marsh vegetation. In this project we sought to quantitatively link the inflow of freshwater to the estuary (San Antonio Bay) with Aransas National Wildlife Refuge (ANWR) coastal marsh salinity and assess the influence of salinity and inundation on Carolina wolfberry (Lycium carolinianum Walt.) phenology (leaf and fruit abundance). The Carolina wolfberry is one of the more common high marsh plant species found at ANWR and has been shown to be a key food source for endangered Whooping Cranes which inhabit the coastal marshes of the ANWR each fall/winter. Results from our study show that periods of decreased freshwater inflows to the estuary correlated with increased marsh salinity at the ANWR. Wolfberry plants at ANWR marsh sites displayed increased fruit abundance during years which had lower mean summer time salinity (June, July, and August) in San Antonio Bay; conversely, during years of increased bay salinity during the same summertime months, wolfberry plants showed decreased fruit abundance. Through the continued validation of the relationship between inflows and coastal marsh salinity, we hope to provide additional insight into how wolfberry phenology varies inter-annually across both salinity and inundation regimes and how freshwater inflows may affect food availability for the endangered Whooping Crane.  相似文献   

7.
The impacts of vegetation on soil erosion are closely associated with the combined effects of above- and below-ground components. In this study, we explore the effects and contributions of Robinia pseudoacacia litter cover and roots on soil erosion. Experiment sites under natural conditions with vegetation cover, plant roots and bare ground plots were investigated for overland flow discharges of 0.5, 1.0 and 2.0?L?s?1 and slope gradients of 8.7%, 17.6%, 26.8%, 36.4% and 46.6%. Results indicate that litter cover and roots have a significant impact on sediment reduction; soil loss was reduced by about 57% and plant roots had a greater impact on the reduction of soil erosion than litter cover. The combination of litter cover and plant roots had a significant effect on decreasing Kr, increasing τc and consequently strengthening soil resistance capacity to erosion. When plants and roots existed on the slopes, Kr decreased by 81% and 66%, and τc increased by 319% and 246%, respectively, in comparison with bare slopes. These results illustrate the importance of high-forest in controlling soil erosion by quantifying the specific contributions of litter cover and plant roots in erosion reduction in the Loess Plateau.  相似文献   

8.
The Mediterranean basin has undergone widespread land cover change. Urbanization of coastal areas, land abandonment of steeper slopes, and agricultural intensification in alluvial plains are recurrent themes. The objective of this study was to examine how vineyard land cover changes have affected agricultural soil erosion in a 50 year period (1950–2011). The study area covers a 235 km2 catchment located near the Gulf of St Tropez. Aerial photographs were used to map land cover in 1950, 1982, 2003 and 2011, and the RUSLE soil erosion model was run to estimate soil erosion.

Between 1950 and 2011, vineyard went from about 2,426 ha to 1,561 ha. Mean soil erosion increased as vineyard slopes became steeper (11.8 T ha?1, 13.2 T ha?1, 14.4 T ha?1 and 13.5 T ha?1 for 1950, 1982, 2003 and 2011). Total erosion decreased after 1982: 28,621 T y?1 in 1950, 29,030 T y?1 in 1982, 22,848 T y?1 in 2003, and 21,074 T y?1 in 2011. Total soil loss in 2011 is about 75% of values in 1950–1982, so impacts on water pollution and channel dredging have evolved positively over time.  相似文献   

9.
Salt-marsh estuarine sediments are not homogeneous. It is obvious that a steady state cannot be assumed if the depositional environments under which salt marshes accumulate change from subtidal through non-vegetated intertidal to vegetated intertidal state during their formation. In addition to these, the supply of sedimentary material depends on the tidal prism which changes as salt marshes are formed. Based on the study of cores collected in the estuarine region of Georgia, USA, it was found that the Mn/Al ratios in sediments of marsh cores change from subtidal through non-vegetated intertidal to vegetated intertidal. The relative variation of biogenic silica preserved in sediments of marsh core reflects the relative supply rate of organic carbon (phytoplankton) produced in the water column to the sediment surface at the time of deposition. In this paper it is proposed that sediment manganese and biogenic silica may be applied as geochemical indicators of changing depositional environments and organic carbon originating from phytoplankton in the estuarine salt marsh sediments.  相似文献   

10.
Grazing by livestock is used as a management tool to prevent the dominance of a single tall-growing specises during succession on European salt marshes. The effects of natural small herbivores are often neglected by managers. Long-term exclosure experiments on the island of Schiermonnikoog show that hares retard vegetation succession at the early stages of salt-marsh development. In the present study we test whether we can scale-up these exclosure studies to a whole salt-marsh system. We compared 30 years of undisturbed vegetation succession at the Wadden Sea islands of Schiermonnikoog, Rottumerplaat (both The Netherlands) and Mellum (Germany). Salt-marsh development started at all sites in the early 1970s. Hares have been present only on Schiermonnikoog. At each site an area was selected covering a gradient from high to low salt marsh. Surface elevation and clay thickness were measured and a vegetation map was made on the three islands. The areas showed similar clay thickness at low surface elevation, indicating similar sedimentation ratesand hence nitrogen inputs. Rottumerplaat and Mellum showed a higher dominance of the late successional speciesAtriplex portulacoides in the low marsh andElymus athericus in the high marsh compared to Schiermonnikoog. Typical mid-successional, important food plant species for hares and geese had a higher abundance at Schiermonnikoog. Patterns of vegetation development in the absence of hares followed the observed patterns in the smallscale exclosure experiments at Schiermonnikoog. Without hare grazing, vegetation succession proceeds more rapidly and leads to the dominance of tall-growing species in earlier stages of succession. The present study shows that next to large herbivores, small herbivores potentially have largescale effects on salt-marsh vegetation succession during the early successional stages.  相似文献   

11.
Over the past century, the Venice lagoon has experienced a high rate of wetland loss and a strong net export of sediments; currently the local Authority is running several projects for beneficial use of dredging materials. From March 1993 until March 1995 the accretionary response of wetlands in the lagoon to changing water levels was studied. Vertical accretion, short term sedimentation and surface elevation change were measured at six sites with varying sediment availability and wave energy. Short term sedimentation averaged 6.85 g m−2 d−1 with a minimum of 0.06 g and a maximum of 72 g during periods of high tides and storms. Over two years accretion ranged from 0.3 to 2.3 cm/yr and surface elevation change ranged from+0.7 to −3.7 cm/yr. The sites with highest accretion were near a river mouth and a site with strong wave energy and rapid erosion of the marsh edge with a high resuspended sediment availability. The rate of accretion at three sites was clearly sufficient to offset relative sea level rise, but a saline site with low sediment availability had the lowest accretion. A sediment fence significantly increased accretion at one site. The results suggest that reduction of turbulent motion or increasing sediment availability are needed to offset wetland loss in different areas of the lagoon.  相似文献   

12.
In many semi-arid areas, estuaries are threatened because of freshwater impoundment. Estuaries are important sites for ecological diversity and, increasingly, for recreation. A system has been developed which rates estuaries according to their botanical importance. A formula allows a single numerical importance score to be calculated. The area cover of each estuarine plant community type (i.e. intertidal salt marsh, submerged macrophytes, reed/sedge swamps and supratidal salt marsh) and its importance in the estuary forms the basis of the score. The ‘ecological condition’ of the plant community and the community richness within the estuary are incorporated into the formula. The formula is effective in determining the botanical importance of estuaries. Further methods to determine the zoological, physical and socio-economic importance of estuaries need to be developed to allow the overall importance of estuaries to be determined.  相似文献   

13.
In many semi-arid areas, estuaries are threatened because of freshwater impoundment. Estuaries are important sites for ecological diversity and, increasingly, for recreation. A system has been developed which rates estuaries according to their botanical importance. A formula allows a single numerical importance score to be calculated. The area cover of each estuarine plant community type (i.e. intertidal salt marsh, submerged macrophytes, reed/sedge swamps and supratidal salt marsh) and its importance in the estuary forms the basis of the score. The ‘ecological condition’ of the plant community and the community richness within the estuary are incorporated into the formula. The formula is effective in determining the botanical importance of estuaries. Further methods to determine the zoological, physical and socio-economic importance of estuaries need to be developed to allow the overall importance of estuaries to be determined.  相似文献   

14.
Climate change and engineering activities have modified the hydrology and morphology of estuaries. However, the potential effects of these modifications on vegetation succession in estuarine marshes are still poorly understood. Therefore, we studied temporal changes in tidal habitats of the Elbe estuary over a period of 30 years. We compared vegetation maps from 1980 to 2010 and calculated the change in area of habitats with respect to three salinity and three elevational zones. To analyze the direction of the temporal change, we differentiated between progressive and regressive succession. By using regression tree models (conditional inference trees), we identified the most influential factors determining progressive or regressive succession of low marshes. The total area of the estuarine tidal marshes at the Elbe increased by 2 % from 1980 to 2010, but changes were unequal among the salinity zones. In the salt and brackish zones, the area covered by high marshes increased substantially but decreased in the tidal freshwater zone, while that covered by low marshes decreased in all the salinity zones. Additionally, we determined high persistence of tidal flats and high marshes, whereas only 19 to 28 % of the low marshes found in 1980 remained in 2010. In salt and brackish marshes, more than two-thirds of the area that had been identified as low marshes in 1980 had progressively developed into high marshes. In contrast, 44 % of the area of low marshes in tidal freshwater marshes showed regressive succession back into tidal flats. The distance to the navigation channel was the main factor determining successional direction in salt and brackish marshes. Here, greater proximity to the channel was correlated with higher risk of regressive succession. In tidal freshwater marshes, we identified both the distance to the navigation channel and the situation on the river shore (i.e. inner bank, outer bank or straight bank) as the main factors for marsh succession. Here, considerable engineering activities in the channel had simultaneously decreased the mean low water level and increased the mean high water level between 1980 and 2010, which led to an increase in tidal amplitude. It is quite likely that these changes negatively modified marsh distribution, increased regressive succession and, thus, lowered the quality of tidal freshwater marshes.  相似文献   

15.
This paper presents the results from a study which was undertaken to monitor, map and quantify salt marsh change along 440 km of shoreline within the county of Essex, south-east England, between 1973 and 1998. Results indicate that during this 25-yr period, 1000 ha of salt marsh has been lost in Essex, primarily due to coastal erosion. This figure represents ca. 25% of the total salt-marsh area originally present in Essex in 1973. The salt marshes of Essex are important nature conservation areas, with many sites designated as Special Protection Areas under the EC Birds Directive (79/409/EEC) and as Special Areas of Conservation under the EC Habitats Directive (92/43/EEC). Salt marshes are also natural features which significantly dissipate wave and tidal energy, thereby playing an important role in contributing to effective coastal defence. The large-scale loss of salt marsh in Essex has, therefore, implications for both nature conservation and flood defence. Potential hypotheses for, and implications of such losses are discussed in this paper, together with the identification of potential management approaches to alleviate the losses.  相似文献   

16.
We studied the impact of livestock grazing on the distribution ofBranta bernicla bernicla (Dark-bellied Brent goose) in the Dutch Wadden Sea during spring. It was hypothesized that livestock facilitate short-term (within-season) grazing for geese as well as long-term (over years). Therefore we measured grazing pressure by geese in salt marsh and polder areas that were either grazed (spring-grazed) or ungrazed during spring (summer-grazed). Additionally, we carried out a preference experiment with captive geese to test the preference between spring-grazed and summer-grazed polder swards. We furthermore compared patterns of use by geese between long-term ungrazed and grazed salt marshes. In May, there is a difference in grazing pressure by geese between polder pastures that are grazed or ungrazed during spring. In this month, the ungrazed polder pastures are abandoned and the geese shift to either the grazed polder pastures or to the salt marsh. Vegetation in the polder that had been spring-grazed had a lower canopy height and a higher tiller density than summer-grazed vegetation. The captive geese in the preference experiment showed a clear preference for vegetation that had been spring-grazed by sheep over ungrazed vegetation. Goose grazing pressure was negatively correlated to canopy height, both on the polder and on the salt marsh. Within the plant communities dominated byFestuca rubra andPuccinellia maritima, marshes that were intensively grazed by livestock generally had higher grazing pressure by geese than long-term ungrazed or lightly grazed salt marshes.  相似文献   

17.
The animal-habitat relationships and seasonal dynamics of the benthic macroinfauna were investigated from November 1986 to October 1988 in the Great Sippe-wissett salt marsh (Massachusetts, USA). Total macrofaunal abundance varied seasonally, displaying a peak in late spring and early summer, then declining sharply during late summer and recovering briefly in fall before collapsing in winter. Three macroinfaunal assemblages were found in the marsh, distributed along gradients of environmental factors. These included a sandy non-organic sediment assemblage, a sandy organic sediment assemblage and a muddy sediment assemblage. The species groups characteristic of unstable sandy non-organic sediments included the polychaetes Leitoscoloplos fragilis, Aricidea jefreyssi, Magelona rosea and Streptosyllis verrilli, the oligochaete Paranais litoralis, and the crustacean Acanthohaustorius millsi. Sandy organic sediments were characterized by the polychaetes Marenzelleria viridis, Capitella capitata, Neanthes succinea, N. arenaceodonta, Polydora ligni and Heteromastus filiformis, the oligochaete Lumbricillus sp., and the mollusc Gemma gemma. In muddy sites, the polychaete Streblospio benedicti and the oligochaetes Paranais litoralis and Monopylephorus evertus were the dominant species. Secondary production of benthic macroinfauna in each of these habitats was estimated. The highest values of biomass and production were recorded in the sandy organic sediments. Secondary production was estimated to be 1850 kJ m-2 yr-1 in sandy organic areas, but only 281 kJ m-2 yr-1 in sandy non-organic areas and 113 kJ m-2 yr-1 in muddy areas. This results in an area-weighted average production of 505 kJ m-2 yr-1 for the unvegetated areas of the marsh. The Great Sippewissett salt marsh has an area of 483800 m2, the total secondary production of the macroinfauna for the whole unvegetated area of the marsh was estimated as 4651 kg dry wt yr-1, expressed as somatic growth. This production value seems consistent with production data obtained for other intertidal North Atlantic environments.  相似文献   

18.
In order to explore the effect of different ecological zones and their above plants in the organic matter cycling of the whole tidal salt marsh, indicators such as total organic carbon (TOC), total nitrogen (TN), C/N ratio, δ13C and δ15N of surface, core sediments, and plants of tidal salt marshes in North Jiangsu Province are analyzed. Subsequently, distribution regularities of these measurement indicators are discussed, and the biogeochemistry processes between sediments and plants are also analyzed. Lastly, the organic matter sources of different ecologic zones in tidal salt marsh are evaluated, and the organic matter accumulations in different ecologic zones induced by their plants are also compared. These results indicate that TOC, TN, C/N ratio and δ13C showed obvious zonal distribution. The organic matter sources are dominated by marine input in the silt flat, artemisia schrenkiana flat, and the transition zone between silt and spartina alterniflora flat, and are controlled by terrigenous input in spartina alterniflora flat. Spartina alterniflora plays an important role in the accumulation of organic matter in the whole tidal salt marshes ecosystem. In the study area, the annually increased TOC, organic matter and TN in the spartina alterniflora, artemisia schrenkiana and reed flats reach 6,451, 12,043 and 536 t, respectively. The amount of TOC, organic matter and TN accumulated in the spartina alterniflora flat is more than that in other ecological zones, which shows that the spartina alterniflora flat exert a non-replaceable effect on the material cycle and exchange in the whole tidal salt marshes ecosystem.  相似文献   

19.
In September 2003, Hurricane Isabel created an inlet over 500 m wide and 10 m deep that connected the Atlantic Ocean and Pamlico Sound. This breach was subsequently filled with sediments dredged from the adjacent sound. The purpose of this study was to determine if the barrier island terrestrial plant communities were naturally re-establishing through primary succession. In 2006–2008, we compared plant communities, soil carbon and nitrogen, and Aeolian transport of sediments in undisturbed back-dunes, undisturbed shrub thickets, putative back-dunes, and putative shrub thickets. We found that species richness and evenness were low on the filled area relative to adjacent plant communities that had persisted through the storm. Plants on the filled area were almost entirely limited to a band of primarily Spartina patens found at the margin of the sound and there were no signs of establishing the typical zonation of back dune grasses, shrubs, and salt marsh. Evaluation of soil quality suggests that nutrients and organic material are not limiting recovery. Aeolian transport, however, was demonstrably higher across the filled area, where no dense stands of taller plants buffered the airflow. Plant re-establishment is suppressed by wind erosion inhibiting deposition of seeds. Recovery of the site will likely depend on the rhizomatous spread of S. patens from the sound shore. S. patens can then potentially facilitate the colonization of other species by buffering the wind and trapping seeds of other plants. Ironically, this slow recovery may benefit federally threatened bird species that require sparse vegetation for nesting success.  相似文献   

20.
Spatial and temporal variations in nitrogen fixation and denitrification rates were examined between July 1991 and September 1992 in the intertidal regions of Tomales Bay (California, USA). Microbial mat communities inhabited exposed mudflat and vegetated marsh surface sediments. Mudflat and marsh sediments exhibited comparable rates of nitrogen fixation. Denitrification rates were higher in marsh sediments. Nitrogen fixation rates were lowest during January at both sites, whereas highest rates occurred during summer and fall. Denitrification rates were highest during fall and winter months in marsh sediments, while rates in mudflat sediments were highest during summer and fall. In mudflat sediments, nitrogen fixation and denitrification rates, integrated over 24 h, ranged from 6 to 79 mg N m-1 d-1 and 1 to 10 mg N m-2 d-1, respectively. Rates of denitrification represented between 6 and 20% of nitrogen fixation rates during the day, but exceeded or were equivalent to nitrogen fixation rates at night. The highest integrated rates of both nitrogen fixation and denitrification occurred during July, whereas, the highest percent loss occurred during spring when denitrification rates amounted to 20% of nitrogen fixation rates during the day. Over an annual cycle, inputs of fixed N to mudflat communities occurred exclusively during daylight. These results underscore the importance of determining integrated diel rates of both nitrogen fixation and denitrification when constructing N budgets. Using this approach, it was shown that microbial denitrification can represent a significant loss of combined nitrogen from mats on daily as well as monthly time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号