共查询到20条相似文献,搜索用时 15 毫秒
1.
Christian Butzeck Uwe Schröder J. Oldeland S. Nolte K. Jensen 《Journal of Coastal Conservation》2016,20(3):221-236
Climate change and engineering activities have modified the hydrology and morphology of estuaries. However, the potential effects of these modifications on vegetation succession in estuarine marshes are still poorly understood. Therefore, we studied temporal changes in tidal habitats of the Elbe estuary over a period of 30 years. We compared vegetation maps from 1980 to 2010 and calculated the change in area of habitats with respect to three salinity and three elevational zones. To analyze the direction of the temporal change, we differentiated between progressive and regressive succession. By using regression tree models (conditional inference trees), we identified the most influential factors determining progressive or regressive succession of low marshes. The total area of the estuarine tidal marshes at the Elbe increased by 2 % from 1980 to 2010, but changes were unequal among the salinity zones. In the salt and brackish zones, the area covered by high marshes increased substantially but decreased in the tidal freshwater zone, while that covered by low marshes decreased in all the salinity zones. Additionally, we determined high persistence of tidal flats and high marshes, whereas only 19 to 28 % of the low marshes found in 1980 remained in 2010. In salt and brackish marshes, more than two-thirds of the area that had been identified as low marshes in 1980 had progressively developed into high marshes. In contrast, 44 % of the area of low marshes in tidal freshwater marshes showed regressive succession back into tidal flats. The distance to the navigation channel was the main factor determining successional direction in salt and brackish marshes. Here, greater proximity to the channel was correlated with higher risk of regressive succession. In tidal freshwater marshes, we identified both the distance to the navigation channel and the situation on the river shore (i.e. inner bank, outer bank or straight bank) as the main factors for marsh succession. Here, considerable engineering activities in the channel had simultaneously decreased the mean low water level and increased the mean high water level between 1980 and 2010, which led to an increase in tidal amplitude. It is quite likely that these changes negatively modified marsh distribution, increased regressive succession and, thus, lowered the quality of tidal freshwater marshes. 相似文献
2.
The value of adenylate energy charge as a biological indicator of the severity of departure from normal environmental conditions was examined in the gastropod Pyrazus ebeninus (Bruguière, 1792) and the bivalves Anadara trapezia (Deshayes, 1840) and Saccostrea commercialis (Iredale and Roughley, 1933). Mean energy charge for each species decreased by 17% or more when salinity was reduced from 35 to 10. Changes with reduced salinity were also found in the concentrations of individual adenylates and several adenylate ratios other than energy charge. Energy charge was calculated from the relative concentrations of adenosine 5-tri-, di- and monophosphate (ATP, ADP, AMP) in the columellar muscle of P. ebeninus and in the adductor muscle of A. trapezia and S. commercialis. Mean energy charge values for individuals in the low-salinity condition (10) were 0.61 for P. ebeninus, 0. 69 for A. trapezia and 0.53 for S. commercialis, compared with mean energy charge values in the control individuals (35 S) of 0.85 to 0.87 for P. ebeninus, 0.84 to 0.85 for A. trapezia and 0.64 to 0.76 for S. commercialis. The decrease in energy charge occurred within 24 h; no further change was found with exposure to low salinity for 48 h (A. trapezia) or no further change was found with exposure to low salinity for 48 h (A. trapezia) or 20 h (P. ebeninus, S. commercialis). Total adenylate concentrations (ATP+ADP+AMP) differed between the three species, with mean values (kg-1 wet weight) of 5.0 mmol in P. ebeninus, 3.4 mmol in A. trapezia and 3.0 mmol in S. commercialis. No trends with time were found in total adenylate concentrations in any species. The changes in energy charge that occurred were not consistent with the differing sensitivity of the three species to reduced salinity, and do not support the use of energy charge as an absolute measure of stress in molluscs generally. 相似文献
3.
Peter Bacopoulos Ethan J. Kubatko Scott C. Hagen Andrew T. Cox Teddy Mulamba 《Environmental Fluid Mechanics》2017,17(2):323-353
Continuous data of vertical-profile salinity were analyzed for four stations located successively upriver in a macrotidal estuary, the lower St. Johns River (Northeast Florida, USA). The data analysis confirmed well-mixed salinity conditions in the river with at most 1.3 ppt of vertical variability at Dames Point (river km 20), where the main variations of salinity are along the longitudinal axis of the river. Given the well-mixed salinity conditions and dominant horizontal structure of salinity variations in the river, we present and apply a barotropic, two-dimensional modeling approach for hydrodynamic-salinity transport simulation in the lower St. Johns River. When properly forced by offshore surge, high-resolution wind fields and freshwater river inflows, the model replicated the salinity measurements remarkably well, including the separation into tidal and sub-tidal components. The data and model results show that, at times, offshore winds and surge can be more influential on longitudinal salinity variations than local winds over the river. We demonstrate the importance of using proper boundary conditions to force the model relative to the minimal sensitivity of the model to parameter adjustment of horizontal mixing and uncertainty-based perturbation of wind and inflow forcings. 相似文献
4.
Salt-marsh estuarine sediments are not homogeneous. It is obvious that a steady state cannot be assumed if the depositional environments under which salt marshes accumulate change from subtidal through non-vegetated intertidal to vegetated intertidal state during their formation. In addition to these, the supply of sedimentary material depends on the tidal prism which changes as salt marshes are formed. Based on the study of cores collected in the estuarine region of Georgia, USA, it was found that the Mn/Al ratios in sediments of marsh cores change from subtidal through non-vegetated intertidal to vegetated intertidal. The relative variation of biogenic silica preserved in sediments of marsh core reflects the relative supply rate of organic carbon (phytoplankton) produced in the water column to the sediment surface at the time of deposition. In this paper it is proposed that sediment manganese and biogenic silica may be applied as geochemical indicators of changing depositional environments and organic carbon originating from phytoplankton in the estuarine salt marsh sediments. 相似文献
5.
6.
7.
Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions. 相似文献
8.
Gerard F. Ricardo Andrew R. Davis Nathan A. Knott Todd E. Minchinton 《Marine Biology》2014,161(4):769-784
Variation in the release and recruitment of larvae of estuarine invertebrates affects the distribution and abundance of adults, as well as trophic interactions in both the plankton and the benthos. Larval release and supply are often timed to environmental cycles such as the diel and tidal cycles. Here, we determined using plankton tows whether the abundance of larvae spanning salt marsh and mangrove habitats across the intertidal landscape varied with diel and tidal cycles. Using three different sampling designs across two sites and within each of two estuaries over a 12-month period, we covered a range of spatial and temporal scales. This allowed us to test the general prediction that densities of meroplankton in the water column would be greater during nocturnal ebb tides than during other phases of the diel or tidal cycle. As predicted, nocturnal ebb tides yielded the highest densities of meroplanktonic larvae and were dominated by first-stage crab zoeae and this finding was most pronounced in the salt marsh. Throughout the course of the year, greater numbers of meroplankters consistently occurred during the ebb tide compared with the flood tide. The densities of other taxa (e.g. gastropods and polychaetes) showed no clear trends with diel or tidal cycles. This study highlights the effects of these pervasive physical cycles on the timing of larval release and supply in the salt marsh–mangrove complex, and emphasises their contribution to the trophic interactions and the dynamics of benthic populations within estuaries. 相似文献
9.
Geographical gradients in the stability of cyclic populations of herbivores and their predators may relate to the degree of specialization of predators. However, such changes are usually associated with transition from specialist to generalist predator species, rather than from geographical variation in dietary breadth of specialist predators. Canada lynx (Lynx canadensis) and snowshoe hare (Lepus americanus) populations undergo cyclic fluctuations in northern parts of their range, but cycles are either greatly attenuated or lost altogether in the southern boreal forest where prey diversity is higher. We tested the influence of prey specialization on population cycles by measuring the stable carbon and nitrogen isotope ratios in lynx and their prey, estimating the contribution of hares to lynx diet across their range, and correlating this degree of specialization to the strength of their population cycles. Hares dominated the lynx diet across their range, but specialization on hares decreased in southern and western populations. The degree of specialization correlated with cyclic signal strength indicated by spectral analysis of lynx harvest data, but overall variability of lynx harvest (the standard deviation of natural-log-transformed harvest numbers) did not change significantly with dietary specialization. Thus, as alternative prey became more important in the lynx diet, the fluctuations became decoupled from a regular cycle but did not become less variable. Our results support the hypothesis that alternative prey decrease population cycle regularity but emphasize that such changes may be driven by dietary shifts among dominant specialist predators rather than exclusively through changes in the predator community. 相似文献
10.
Changes in the dissolved nitrogen pool across land cover gradients in Wisconsin streams 总被引:2,自引:0,他引:2
Increases in anthropogenic nitrogen fixation have resulted in wide-scale enrichment of aquatic ecosystems. Existing biogeochemical theory suggests that N enrichment is associated with increasing concentrations of nitrate; however, dissolved organic nitrogen (DON) is often a major component of the total dissolved nitrogen (TDN) pool in streams and rivers, and its concentration can be significantly elevated in human-influenced basins. We examined N concentrations during summer base flow conditions in 324 Wisconsin streams to determine whether DON was a significant component of TDN and how its relative contribution changed across a gradient of increasing human (agriculture and urban) land use for 84 of these sites. Total dissolved nitrogen varied from 0.09 to 20.74 mg/L, and although DON was significantly higher in human-dominated basins relative to forested and mixed-cover basins, its concentration increased relatively slowly in response to increasing human land cover. This limited response reflected a replacement of wetland-derived DON in low-N streams by anthropogenic sources in human-dominated sites, such that net changes in DON were small across the land use gradient. Nitrate-N increased exponentially in response to greater human land cover, and NH4-N and NO2-N were present at low levels. Nitrite-N exceeded NH4-N at 20% of sites and reached a maximum concentration of 0.10 mg/L. This examination suggests that basic mechanisms driving N losses from old-growth forests subject to N saturation also shape the summertime N pool in Wisconsin streams, in addition to other processes dictated by landscape context. The overwhelming role of human land use in determining the relative and absolute composition of the summertime N pool included (1) rapid increases in NO3-N, (2) limited changes in DON, and (3) the unexpected occurrence of NO2-N. High (>3 mg/L) TDN conditions dominated by NO3-N, regardless of landscape context or forms of N inputs, indicate a state of "N hypersaturation", which appears to be increasingly common in human-influenced streams and rivers. Many sites in agriculturally rich areas had NO2-N and NO3-N concentrations that, if sustained, are at chronically toxic levels for sensitive aquatic biota, suggesting that N enrichment now has local consequences for resident stream biota in addition to contributing to coastal eutrophication. 相似文献
11.
用定量分析法对镇江内江湿地植物群落演替进程中种群生态位动态进行了研究.先采用"空间代替时间"方法,选择四类典型样地,分别代表群落演替进程中四个不同阶段.再以每个调查样方作为多维资源的综合资源位,用Levins 生态位宽度公式和Pianka生态位重叠公式测算不同演替阶段内所有种群的生态位宽度以及同一演替阶段内所有种群间的生态位重叠,并分析它们的生态学意义.结果表明,不同演替阶段,群落的优势种群生态位占绝对优势,揭示了它们较强的环境适应能力和较高的资源利用能力.种群生态位动态较好地表征了演替过程中对应种群及生境的动态变化,尤其是优势种群的更迭.总体上,生态位较宽的种群间生态位重叠较大,有较多相似生态特性的种群间生态位重叠也较大.群落内种群的平均生态重叠随演替逐渐增加,至中后期最高,后期略有回落,这主要由群落内种群种内竞争和种间竞争共同作用的结果. 相似文献
12.
J. W. Fleeger 《Marine Biology》1979,52(2):147-156
To elucidate the population dynamics of abundant meiofauna, a 15-month field study of 3 species of harpacticoid copepods was conducted in a South Carolina (USA) estuary. Per capita birth and death rates and average brood size (number of eggs per adult female) were lowest for Enhydrosoma propinguum (Brady), Microarthridion littorale (Poppe), and Stenhelia (Delavalia) bifidia (Coull) from November–February, indicating that food or density-independent factors such as temperature regulated winter densities. Reproduction for all species began in February, with the first appearance of copepodites approximately 1 month later. From March–October, M. littorale displayed high per capita birth and death rates (>0.6 individual-1 day-1), and high average brood size (8 to 9 eggs per adult female). As this species is epibenthic, and thus susceptible to grazing by detritivores, these data suggest that M. littorale was limited by predation. S. (Delavalia) bifidia displayed a sharp increase in density, birth rate and average brood size in July, but birth and death rates (0.3 individual-1 day-1) were always lower than those of M. littorale and average brood size gradually decreased from July–December. As this species burrows and is less susceptible to grazing predation, these data are consistent with the hypothesis that S. (Delavalia) bifidia became food-limited as population growth approached its carrying capacity. Although E. propinguum was the most abundant species, quantification of birth potential was not accomplished due to an underestimate of the number of ovigerous females. Therefore, little can be concluded about the mechanism of the summer density regulation of E. propinguum.Contribution No. 274 from the Belle W. Baruch Institute for Marine Biology and Coastal Research, University of South Carolina. 相似文献
13.
The myosin ATPase activity of the flexor muscle of an estuarine crab, Scylla serrata, was studied in relation to salinity adaptation. The enzyme is activated more by calcium than by magnesium; it exhibits maximum activity at pH 9.0, and substrate inhibition above 0.5 mM ATP. The enzyme activity increases in crabs adapted to higher salinities. The enzyme from normal (70% sea water) crabs shows two pH optima; one at pH 7.0, the other at pH 9.0. The neutral optimum shifts to pH 6.0 upon adaptation to full strength sea water, but disappears upon adaptation to 25% sea water. The enzyme from normal crabs shows an optimum at 30 °C; adaptation to full strength sea water raises this optimum to 38 °C, whereas adaptation to 25% sea water decreases it to 24 °C. These changes are discussed in relation to estuarine conditions. 相似文献
14.
O. R. Chaparro C. J. Segura S. J. A. Osores J. A. Pechenik L. M. Pardo V. M. Cubillos 《Marine Biology》2014,161(3):619-629
At reduced salinities, brooding females of some gastropods and bivalves may isolate their mantle cavities from the environment for several days, maintaining internal osmotic concentration but causing severe declines in dissolved oxygen and pH, and increases in ammonia and other toxic substances in the mantle fluid. This study in November–December examined the immediate consequences of such stresses for brooded embryos of Quempillén estuary gastropod Crepipatella dilatata, in terms of time to juvenile emergence and rates of embryonic growth [measured as shell length (SL)]. Juveniles were also monitored for latent effects on feeding rates, oxygen consumption, and growth for the first 4 weeks after emergence into normal salinity seawater. An acute salinity stress lasting 3 days applied to females that were brooding pre-shelled or intermediate-shelled stages increased embryonic incubation periods, but without affecting SL at emergence. Growth rates were reduced for encapsulated embryos regardless of the stage at which the salinity stress was applied. Latent effects on juvenile development included slower shell growth and reduced rates of oxygen consumption and feeding. These effects were sustained for the first month after release from the female. The results suggest that marked reductions in salinity lasting for several days indirectly but negatively affect the development of brooded embryos of C. dilatata and also affect the juveniles for at least several weeks following their release, even after salinity has returned to normal. 相似文献
15.
子午岭植被演替过程中土壤生物学特性的动态 总被引:1,自引:1,他引:1
土壤生物学特性在土壤有机质的形成和降解、营养循环等方面起重要作用。植被的恢复演替显著影响土壤生物学特性,尤其影响土壤酶活性。植被演替过程中土壤酶活性的研究结果表明,随着植被恢复年限的延长,土壤脲酶和转化酶的活性逐渐提高,17 a达到最大值,随后有所降低。土壤酶活性和土壤化学特性和微生物量的相关性分析表明,土壤转化酶和脲酶不仅互相之间具有显著的相关性,而且它们与土壤有机碳、全氮、微生物碳氮之间都具有显著的正相关性,说明土壤酶活性与土壤有机质紧密相关,与微生物的大小紧密相关,所以土壤酶活性可以表征土壤生物学肥力。 相似文献
16.
M. B. Jones 《Marine Biology》1975,30(1):13-20
The effects of cadmium (3CdSO4·8H2O), zinc (ZnSO4·7H2O) and lead [Pb (NO3)2] on mortality, and cadmium, zinc and mercury (HgCl2) on osmoregulation, have been recorded for marine and estuarine species of isopods (Crustacea). The marine species studied were Idotea baltica, I. neglecta, I. emarginata and Eurydice pulchra, which were adapted to 100, 80, 60 and 40% sea water (SW) (100% SW э 34‰ S). The estuarine species used were Jaera albifrons sensu stricto and J. nordmanni, which were adapted to 100, 50, 10 and 1% SW. Both groups of isopods have low mortalities in 100% SW with 10 and 20 ppm of cadmium, zinc and lead, but a decrease in salinity caused an increase in the toxicities of these metals and reduced the LT50 values (time, in hours, to 50% mortality). Mortalities at 10°C were generally higher than those recorded at 5°C. Cadmium had no significant effect on the osmoregulation of I. baltica and I. emarginata in 100 and 80% SW at 5°C, but this metal significantly lowered the blood osmotic concentration of I. neglecta in 80% SW. Zinc did not alter the haemolymph osmotic concentration of I. neglecta in 100 and 80% SW, but significantly lowered the blood osmotic concentration of I. baltica in 100% SW. Cadmium, zinc and mercury also significantly altered the osmoregulatory ability of J. albifrons in dilute saline. 相似文献
17.
J. A. Oyekan 《Marine Biology》1987,95(2):267-273
Between July 1978 and March 1980, the distribution, population dynamics and secondary production of Caulleriella caputesocis St. Joseph, 1864, in Southampton Water, South England, were investigated. The distribution of the polychaete was related to amount of silt and copper-content of the sediment, the highest densities occurring in sediment containing 60 to 100% silt and less than 50 ppm copper. Breeding occurred at a low level throughout the year, usually when the worms were over one year old, with peak breeding between May and September. C. caputesocis in Southampton Water is monotelic, and oocytes measured 120 to 160 m in diameter at spawning. Unshed oocytes were resorbed. Annual secondary production varied between 0.01 and 5.90 g C m-2 yr-1 and P:B ratio of the species ranged between 0.84 and 7.09. 相似文献
18.
J. A. Oyenekan 《Marine Biology》1986,93(2):217-223
From July 1978 to March 1980, a study was made on the distribution, population dynamics and secondary production of Nephtys hombergii Audouin et Edw. occurring in the sublittoral industrialised region of Southampton Water in south England. The distribution of the worm was related to the silt content and copper level of the sediment, the greatest densities of N. hombergii being found in sediment containing 60 to 100% silt. Breeding occurred at a low level throughout the year, with a maximum in July to September and November to January in the second year of growth. Spawning occurred when the oocytes measured 200m in diameter, and unshed gametes were resorbed. Annual production varied between 0.092 and 4.32 g C m-2 yr-1 (ash-free dry weight) and amounted to 1.9–39.4% of the total macrofaunal production at the sampling stations. The production:biomass (P:B) ratio of the species varied between 1.6 and 2.9. 相似文献
19.
Zooid size and colony growth of the estuarine bryozoan Conopeum seurati (Canu) (order: Cheilostomatida; suborder: Malacostegina) were examined over 15 mo at Avonmouth Dock, Avon, England. Data
were analysed in conjunction with synchronous measurements of temperature, salinity and food availability. Zooid length, width
and area were strongly temperature-dependent, while both food availability and colony growth rate had no significant effect
on zooid length, width or area. Salinity and the interaction of temperature and salinity significantly influenced zooid length
and area, suggesting that changes in zooid size may result from oxygen limitation in warm waters. The validity of a number
of other mechanisms proposed to account for temperature-related changes in zooid size is discussed. The results support the
use of zooid size as an indicator of both long-term trends and seasonal variations in temperature in Recent and fossil assemblages
as long as data sets are large and the effects of other factors on zooid size are considered. Colony growth rate was found
to be significantly influenced by both the amount of food available to the colonies and the combined effect of temperature
and food availability, suggesting that growth rate increases as food increases, but that the former may be limited at low
temperatures when metabolic rates are low.
Received: 30 March 1999 / Accepted: 24 September 1999 相似文献
20.
The importance of salinity experienced during embryonic development and initial larval biomass on larval growth was studied
in the South American estuarine crab Chasmagnathus granulata. Ovigerous females were maintained at three salinities (15, 20, and 32‰) from egg laying to hatching of zoea l. Larvae from
all treatments were reared under constant conditions of photoperiod (12∶12), temperature (18°C), and salinity (first instar
at 20‰, subsequent instars at 32‰). Biomass was measured as dry weight, carbon, and nitrogen content per individual at egg
laying, hatching of zoea l, premoult zoea l, and zoea 4, and in 8-day-old megalopa. From hatching to premoult zoea 4, biomass
was higher for larvae from prehatching salinities of 15 and 32‰. There was a significant positive correlation between biomass
at hatching and at premoult zoea l and zoea 4. Accumulated biomass during zoeal stages tended to be higher for larvae from
broods with higher biomass at hatching, although this trend was not always significant. Zoea 4 either directly metamorphosed
to megalopa or moulted to zoea 5, following, respectively, a short or long developmental pathway. The proportion of zoea 4
that followed the long pathway was negatively correlated with biomass of zoeal stages. Biomass at hatching was correlated
with biomass of megalopae developed through the short pathway, although it was not correlated with the accumulated biomass
at this stage. Megalopae developed through the long pathway (i.e. metamorphosed from zoeae 5) had higher biomass than those
from the short pathway. The present results suggest that prehatching salinity and initial egg and larval biomass can be very
important for larval growth.
Published online: 9 August 2002 相似文献