首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

2.
Litter materials from forested watersheds can be a significant source of dissolved organic matter (DOM) to surface waters that can contribute to the formation of carcinogenic disinfection by-products (DBPs) during drinking-water chlorination. This study characterized the reactivity of DOM from litter leachates of representative vegetation in oak woodlands, a major plant community in the Foothill Region of California. Leachates from fresh and decomposed litter (duff) from two oak species, pine, and annual grasses were collected for an entire rainy season to evaluate their reactivity to form DBPs on chlorination. Relationships among specific ultraviolet absorbance (SΔUVA), fluorescence index (FI), specific differential ultraviolet absorbance (SΔUVA), specific chlorine demand (SCD), and the dissolved organic carbon:dissolved organic nitrogen (DOC:DON) ratio to the specific DBP formation potential (SDBP-FP) were examined. The DOM derived from litter materials had considerable reactivity in forming trihalomethanes (THMs) (1.80-3.49 mmol mol), haloacetic acid (HAAs) (1.62-2.76 mmol mol(-1)), haloacetonitriles (HANs) (0.12-0.37 mmol mol(-1)), and chloral hydrate (CHD) (0.16-0.28 mmol mol). These values are comparable to other identified watershed sources of DBP precursors reported for the California Delta, such as wetlands and organic soils. Vegetation type and litter decomposition stage (fresh litter versus 1-5 yr-old duff) were key factors that determined characteristics of DOM and their reactivity to form DBPs. Pine litter had significantly lower specific THM formation potential compared with oak and grass, and decomposed duff had a greater DON content, which is a precursor of HANs and other nitrogenous DBPs. The SΔUVA and SDBP-FP were temporally variable and dependent on vegetation type, degree of decomposition, and environmental conditions. Among the optical properties of DOM, SΔUVA was the only parameter that was consistently correlated with SDBP-FP.  相似文献   

3.
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2= 0.7, p = 0.005, range = 4.0-10.1 mg L(-1); ISS: R2= 0.71, p = 0.004, range = 2.04-7.3 mg L(-1)); dissolved organic carbon (DOC) concentration (R2= 0.79, p = 0.001, range = 1.5-4.1 mg L(-1)) and soluble reactive phosphorus (SRP) concentration (R2= 0.75, p = 0.008, range = 1.9-6.2 microg L(-1)) decreased with increasing disturbance intensity; and ammonia (NH4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2= 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.  相似文献   

4.
Dissolved organic nitrogen (DON) has been hypothesized to play a major role in N cycling in a variety of ecosystems. Our aim was to assess the seasonal and concentration relationships between dissolved organic carbon (DOC), DON, and NO3- within 102 streams and 16 lakes within catchments of differing complexity situated in Wales. Further, we aimed to assess whether patterns of land use, soil type, and vegetation gave consistent trends in DON and dissolved inorganic nitrogen (DIN) relationships over a diverse range of catchments. Our results reinforce that DON constitutes a significant component of the total dissolved N pool typically representing 40 to 50% of the total N in streams and lakes but sometimes representing greater than 85% of the total dissolved N. Generally, the levels of DON were inversely correlated with the concentration of DIN. In contrast to DIN concentrations, which showed distinct seasonality, DON showed no consistent seasonal trend. We hypothesize that this reflects differences in the bioavailability of these two N types. The amount of DON, DOC, and DIN was significantly related to soil type with higher DON export from Histosol-dominated catchments in comparison with Spodosol-dominated watersheds. Vegetation cover also had a significant effect on DON concentrations independent of soil type with a nearly twofold decrease in DON export from forested catchments in comparison with nonforested watersheds. Due to the diversity in catchment DON behavior, we speculate that this will limit the adoption of DON as a broad-scale indicator of catchment condition for use in monitoring and assessment programs.  相似文献   

5.
Abstract: Differences in the storm‐event responses of dissolved organic carbon (DOC) and nitrogen (DON) in streamflow and ground water were evaluated for a glaciated forested watershed in western New York. Eight to ten storm events with varying rainfall amounts, intensities, and antecedent moisture conditions were studied for three catchments (1.6, 3.4, and 696 ha) over a three‐year period (2003‐2005). Concentrations of DOC in streamflow exiting the catchments were significantly higher for storm events following a dry period, whereas no similar response was observed for DON. Highest DON concentrations in streamflow were typically associated with storm events following wet antecedent moisture conditions. In addition to antecedent moisture conditions, DOC concentrations were also positively correlated with precipitation amounts, while DON did not reveal a consistent pattern. Streamwater and ground‐water concentrations of DOC during storm events were also strongly correlated with riparian ground‐water depths but a similar relationship was not observed for DON. Ground‐water DON concentrations were also more variable than DOC. We hypothesized that the differences in DOC and DON responses stemmed from the differences in catchment sources of these solutes. This study suggests that while DOC and DON are intrinsically linked as components of dissolved organic matter, their dynamics and exports from watersheds may be regulated by a different set of mechanisms and factors. Identifying these differences is critical for developing more reliable and robust models for transport of dissolved organic matter.  相似文献   

6.
Soils that receive large applications of animal wastes and sewage sludge are vulnerable to releasing environmentally significant concentrations of dissolved P available to subsurface flow owing to the gradual saturation of the soil's P sorption capacity. This study evaluated P sorption (calculated from Langmuir isotherms) and availability of P (as CaCl2-P and resin P) in soils incubated for 20 d with poultry litter, poultry manure, cattle slurry, municipal sewage sludge, or KH2PO4, added on a P-equivalent basis (100 mg P kg(-1)). All the P sources had a marked negative effect on P sorption and a positive effect on P availability in all soils. In the cattle slurry- and KH2PO4-treated soils, the decreases in P sorption maximum (19-66%) and binding energy (25-89%) were consistently larger than the corresponding decreases (7-41% and 11-30%) in poultry litter-, poultry manure-, and sewage sludge-treated soils. The effects of cattle slurry and KH2PO4 on P availability were, in most cases, larger than those of the other P sources. In the poultry litter, poultry manure, and sewage sludge treatments, the increase in soil solution P was inversely related (R2 = 0.75) to the input of Ca from these relatively high Ca (13.5-42 g kg(-1)) sources. Correlation analyses implied that the magnitude of the changes in P sorption and availability was not related to the water-extractable P content of the P sources. Future research on the sustainable application of organic wastes to agricultural soils needs to consider the non-P- as well as P-containing components of the waste.  相似文献   

7.
The increased use of animal waste-derived effluents for irrigation could result in the enhanced movement of pesticides through complexation with dissolved organic materials. Batch equilibrium studies were conducted to measure the interaction among soil, chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate], and dissolved organic matter (DOM) from poultry, swine, and cow waste-derived lagoon effluents. All DOM was found to have a strong affinity for chlorpyrifos, resulting in reduced sorption of chlorpyrifos by soil, thus the potential for DOM-enhanced mobility. Effluent DOM was observed to sorb to soils. Thus, for increasingly higher soil mass to solution volume ratios, the effect of chlorpyrifos association with water-borne DOM on sorption decreases significantly. For high soil mass to solution volume ratios typical of soil profiles in the landscape, the potential for DOM-enhanced transport will be greatly attenuated. Dissolved organic matter concentration and the nonpolar nature of DOM in the lagoon effluent decreased with increasing residence time in the cells of the lagoon system, thus reducing the potential for DOM-enhanced transport.  相似文献   

8.
Passive leaching by rainfall and snowmelt is a popular method to treat piles of spent mushroom substrate (SMS) before its reuse. During this field weathering process, leachate percolates into the underlying soils. A field study was conducted to examine the chemistry of SMS leachate and effects of infiltration. Two SMS piles were deposited (90 and 150 cm in height) over a Typic Hapludult and weathered for 24 mo. Leachate was collected biweekly using passive capillary samplers. The SMS leachate contained high concentrations of dissolved organic carbon (DOC; 0.8-11.0 g L(-1)), dissolved organic nitrogen (DON; 0.1-2 g L(-1)), and inorganic salts. The pH, electrical conductivity, and acid neutralizing capacity were 6.6 to 9.0, 21 to 66 ds m(-1), and 10 to 75 mmolc L(-1), respectively. Inorganic chemistry of the leachate was dominated by K+, Cl-, and SO24-. Leachate DOC was predominantly low molecular weight (<1000 Da) organic acids. During 2 yr of weathering, the 90-cm SMS pile released (per cubic meter of SMS) 3.0 kg of DOC, 1.6 kg of dissolved N, and 26.6 kg of inorganic salts. The 150-cm pile released (per cubic meter of SMS) 2.8 kg of DOC, 0.7 kg of dissolved N, and 13.6 kg of inorganic salts. The 150 cm pile retained more water and exhibited lower net nitrification compared with the 90-cm pile. The top 90 cm of soil retained 20 to 89% of the leachate solutes. Weathering of SMS in piles of 90 cm depth or greater may adversely affect ground water quality.  相似文献   

9.
We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3-N and the proportion of upland area in drainage basins in both catchments. The regression slope, which we assumed to reflect the impact on water quality, was 24% lower for the Akkeshi catchment (0.012 +/- 0.001) than for the Shibetsu catchment (0.016 +/- 0.001). In the Akkeshi catchment, there was a significant negative correlation between the proportion of wetlands in the drainage basins and stream NO3-N concentration. Stream dissolved organic nitrogen (DON) and carbon (DOC) concentrations were significantly higher in the Akkeshi catchment. Upland and urban land uses were strongly linked to increases in in-stream N concentrations in both catchments, whereas wetlands and forests tended to mitigate water quality degradation. The denitrification potential of the soils was highest in wetlands, medium in riparian forests, and lowest in grasslands; and was significant in wetlands and riparian forests in the Akkeshi catchment. The solubility of soil organic carbon (SOC) and soil moisture tended to determine the denitrification potential. These results indicate that the water environment within the catchments, which influences denitrification potential and soil organic matter content, could have caused the difference in stream water quality between the two catchments.  相似文献   

10.
Aluminum sulfate (alum; Al(2)(SO(4))(3).14H(2)O) is used as a chemical treatment of poultry litter to reduce the solubility and release of phosphate, thereby minimizing the impacts on adjacent aquatic ecosystems when poultry litter is land applied as a crop fertilizer. The objective of this study was to determine, through the use of X-ray absorption near edge structure (XANES) spectroscopy and sequential extraction, how alum amendments alter P distribution and solid-state speciation within the poultry litter system. Our results indicate that traditional sequential fractionation procedures may not account for variability in P speciation in heterogeneous animal manures. Analysis shows that NaOH-extracted P in alum amended litters is predominantly organic ( approximately 80%), whereas in the control samples, >60% of NaOH-extracted P was inorganic P. Linear least squares fitting (LLSF) analysis of spectra collected of sequentially extracted litters showed that the P is present in inorganic (P sorbed on Al oxides, calcium phosphates) and organic forms (phytic acid, polyphosphates, and monoesters) in alum- and non-alum-amended poultry litter. When determining land application rates of poultry litter, all of these compounds must be considered, especially organic P. Results of the sequential extractions in conjunction with LLSF suggest that no P species is completely removed by a single extractant. Rather, there is a continuum of removal as extractant strength increases. Overall, alum-amended litters exhibited higher proportions of Al-bound P species and phytic acid, whereas untreated samples contained Ca-P minerals and organic P compounds. This study provides in situ information about P speciation in the poultry litter solid and about P availability in alum- and non-alum-treated poultry litter that will dictate P losses to ground and surface water systems.  相似文献   

11.
Quantification of soil carbon (C) cycling as influenced by management practices is needed for C sequestration and soil quality improvement. We evaluated the 10-yr effects of tillage, cropping system, and N source on crop residue and soil C fractions at 0- to 20-cm depth in Decatur silt loam (clayey, kaolinitic, thermic, Typic Paleudults) in northern Alabama, USA. Treatments were incomplete factorial combinations of three tillage practices (no-till [NT], mulch till [MT], and conventional till [CT]), two cropping systems (cotton [Gossypium hirsutum L.]-cotton-corn [Zea mays L.] and rye [Secale cereale L.]/cotton-rye/cotton-corn), and two N fertilization sources and rates (0 and 100 kg N ha(-1) from NH(4)NO(3) and 100 and 200 kg N ha(-1) from poultry litter). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop residue varied among treatments and years and total residue from 1997 to 2005 was greater in rye/cotton-rye/cotton-corn than in cotton-cotton-corn and greater with NH(4)NO(3) than with poultry litter at 100 kg N ha(-1). The SOC content at 0 to 20 cm after 10 yr was greater with poultry litter than with NH(4)NO(3) in NT and CT, resulting in a C sequestration rate of 510 kg C ha(-1) yr(-1) with poultry litter compared with -120 to 147 kg C ha(-1) yr(-1) with NH(4)NO(3). Poultry litter also increased PCM and MBC compared with NH(4)NO(3). Cropping increased SOC, POC, and PCM compared with fallow in NT. Long-term poultry litter application or continuous cropping increased soil C storage and microbial biomass and activity compared with inorganic N fertilization or fallow, indicating that these management practices can sequester C, offset atmospheric CO(2) levels, and improve soil and environmental quality.  相似文献   

12.
High in situ concentrations of inorganic N and P have been reported in overland/litter interflow from Sierran forests, indicating that these nutrients are derived from the forest floor O horizons. To test this hypothesis, forest floor monoliths consisting of the combined O(e) and O(i) horizons were collected near the South Shore of Lake Tahoe, Nevada, for leaching experiments. Three monoliths were left intact, and three were hand-separated according to horizon for a total of three treatments (combined O(e)+O(i), O(e) only, and O(i) only) by three replications. Samples were randomized and placed into lined leaching bins. Initial leaching consisted of misting to simulate typical early fall precipitation. This was followed by daily snow applications and a final misting to simulate spring precipitation. Leachate was collected, analyzed for NH(4)(+)-N, NO(3)(-)-N, and PO(4)(3-)-P, and a nutrient balance was computed. There was a net retention of NH(4)(+)-N, but a net release of both NO(3)(-)-N and PO(4)(3-)-P, and a net release of inorganic N and P overall. Total contributions (mg) of N and P were highest from the O(e) and O(e)+O(i) combined treatments, but when expressed as per unit mass, significantly (p < 0.05) higher amounts of NO(3)(-)-N and PO(4)(3-)-P were derived from the O(i) materials. The nutrients in forest floor leachate are a potential source of biologically available N and P to adjacent surface waters. Transport of these nutrients from the terrestrial to the aquatic system in the Lake Tahoe basin may therefore play a part in the already deteriorating clarity of the lake.  相似文献   

13.
Streamside vegetated buffer strips (riparian zones) are often assumed to be zones of ground water nitrate (NO3(-)) attenuation. At a site in southwestern Ontario (Zorra site), detailed monitoring revealed that elevated NO3(-) -N (4-93 mg L(-1)) persisted throughout a 100-m-wide riparian floodplain. Typical of riparian zones, the site has a soil zone of recent river alluvium that is organic carbon (OC) rich (36 +/- 16 g kg(-1)). This material is underlain by an older glacial outwash aquifer with a much lower OC content (2.3 +/- 2.5 g kg(-1). Examination of NO3(-), Cl(-), SO4(2-), and dissolved organic carbon (DOC) concentrations; N/Cl ratios; and NO3(-) isotopic composition (delta15N and delta18O) provides evidence of four distinct NO3(-) source zones within the riparian environment. Denitrification occurs but is incomplete and is restricted to a narrow interval located within ~0.5 m of the alluvium-aquifer contact and to one zone (poultry manure compost zone) where elevated DOC persists from the source. In older ground water close to the river discharge point, denitrification remains insufficient to substantially deplete NO3(-). Overall, denitrification related specifically to the riparian environment is limited at this site. The persistence of NO3(-) in the aquifer at this site is a consequence of its Pleistocene age and resulting low OC content, in contrast to recent fluvial sediments in modern agricultural terrain, which, even if permeable, usually have zones enriched in labile OC. Thus, sediment age and origin are additional factors that should be considered when assessing the potential for riparian zone denitrification.  相似文献   

14.
Dutta, Sudarshan, Shreeram Inamdar, Jerry Tso, Diana S. Aga, and J. Tom Sims, 2012. Dissolved Organic Carbon and Estrogen Transport in Surface Runoff from Agricultural Land Receiving Poultry Litter. Journal of the American Water Resources Association (JAWRA) 48(3): 558-569. DOI: 10.1111/j.1752-1688.2011.00634.x Abstract: Dissolved organic carbon (DOC) provides a reactive substrate for the transport of organic contaminants with runoff. Very few studies have investigated the export of DOC from agricultural land, especially those receiving manure applications. We investigated exports of DOC in surface runoff from agricultural fields receiving various treatments of poultry litter (raw vs. pelletized). In addition, we also investigated how estrogens in runoff were associated with DOC. Different forms of estrogens studied were: estrone, 17β-estradiol, estriol, and their conjugates. Experimental agricultural plots were 12 m × 5 m long and had reduced tillage and no-till management practices. The aromatic content of DOC was characterized using specific ultraviolet absorbance (SUVA). Flow-weighted concentrations of DOC and SUVA in surface runoff from plots with poultry litter were significantly (p ≤ 0.10) greater than the control (no litter) plots. Compared to pelletized poultry litter, reduced-tillage plots with raw litter yielded higher DOC concentrations and SUVA values. No significant differences (p ≥ 0.10) in DOC and SUVA were observed between litter treatments for plots with no-till. Total estrogen concentrations (including all forms) were positively and significantly (p ≤ 0.10) correlated with DOC. These results can help select and guide agricultural management practices that can reduce the exports of DOC and associated contaminant from agricultural land receiving manure applications.  相似文献   

15.
Earthworms affect soil structure and the movement of agrochemicals. Yet, there have been few field-scale studies that quantify the effect of earthworms on dissolved nitrogen fluxes in agroecosystems. We investigated the influence of semi-annual earthworm additions on leachate production and quality in different row crop agroecosystems. Chisel-till corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation (CT) and ridge-till corn-soybean-wheat (Triticum aestivum L.) rotation (RT) plots were arranged in a complete randomized block design (n = 3) with earthworm treatments (addition and ambient) as subplots where zero-tension lysimeters were placed 45 cm below ground. We assessed earthworm populations semi-annually and collected leachate biweekly over a three-year period and determined leachate volume and concentrations of total inorganic nitrogen (TIN) and dissolved organic nitrogen (DON). Abundance of deep-burrowing earthworms was increased in addition treatments over ambient and for both agroecosystems. Leachate loss was similar among agroecosystems, but earthworm additions increased leachate production in the range of 4.5 to 45.2% above ambient in CT cropping. Although leachate TIN and DON concentrations were generally similar between agroecosystems or earthworm treatments, transport of TIN was significantly increased in addition treatments over ambient in CT cropping due to increased leachate volume. Losses of total nitrogen in leachate loadings were up to approximately 10% of agroecosystem N inputs. The coincidence of (i) soluble N production and availability and (ii) preferential leaching pathways formed by deep-burrowing earthworms thereby increased N losses from the CT agroecosystem at the 45-cm depth. Processing of N compounds and transport in soil water from RT cropping were more affected by management phase and largely independent of earthworm activity.  相似文献   

16.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

17.
Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.  相似文献   

18.
Both the bioavailability of a trace metal (TM) in a soil and the risk of leaching to the ground water are linked to the metals concentration in the soil solution. Sampling soil solution by tension lysimetry with suction cups is a simple and established technique that is increasingly used for monitoring dissolved TM in soils. Of major concern, however, is the sorption of TM by the walls of the samplers. Metal sorption by different materials used in suction cups can vary widely, depending also on the chemistry of the soil solution. We compared the sorption of Cu, Zn, Cd, and Pb by different standard-size and micro suction cups in the laboratory at two pH values (4.5 and 7.5 or 8.0) in absence and presence of dissolved organic carbon (DOC). In addition, we investigated the sorption of DOC from different origins by the cup materials. At both pH values, the weakest sorption of all four TMs was exhibited by standard-size suction cups based on nylon membranes and by hollow fibers made from polyvinyl alcohol (PVA). At alkaline pH, borosilicate glass, ceramic materials, and polytetrafluorethylene (PTFE) mixed with silicate were characterized by generally strong sorption of all investigated TMs. In addition, Cu and Pb were strongly sorbed at low pH by PTFE-silicate and a ceramic material used for the construction of standard-size suction cups. On the other hand, sorption of Cu, Zn, and Cd by ceramic capillaries produced from pure aluminum oxide was negligible at low pH. Micro suction cups made of an unknown polymerous tube sorbed Cu strongly, but were well suited to monitor Zn, Cd, and Pb at low pH, and, in the presence of DOC, also at high pH. Major cations (Na+, Mg2+, K+, Ca2+) and anions (Cl-, NO3-, SO4(2-)) were not or very weakly sorbed by all cup materials, except for Mg2+, K+, and Ca2+ by borosilicate glass at pH 7.5. Trace metal sorption by suction cups was generally greatly reduced in the presence of DOC, especially at alkaline pH. The sorption of DOC itself depended on its source. Dissolved organic carbon from leaf litter extracts with a probably large hydrophobic fraction was sorbed more strongly than mainly hydrophilic DOC from a mineral soil solution.  相似文献   

19.
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous--derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 +/- 0.4 vs. 0.7 +/- 0.3 mg L(-1)) but comprised < 5% ofmainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs.  相似文献   

20.
When improperly managed, land application of animal manures can harm the environment; however, limited watershed-scale runoff water quality data are available to research and address this issue. The water quality impacts of conversion to poultry litter fertilization on cultivated and pasture watersheds in the Texas Blackland Prairie were evaluated in this three-year study. Edge-of-field N and P concentrations and loads in surface runoff from new litter application sites were compared with losses under inorganic fertilization. The impact on downstream nutrient loss was also examined. In the fallow year with no fertilizer application, nutrient losses averaged 3 kg N ha(-1) and 0.9 kg P ha(-1) for the cultivated watersheds and were below 0.1 kg ha(-1) for the pasture watersheds. Following litter application, PO(4)-P concentrations in runoff were positively correlated to litter application rate and Mehlich-3 soil P levels. Following litter application, NO(3)-N and NH(4)-N concentrations in runoff were typically greater from cultivated watersheds, but PO(4)-P concentrations were greater for the pasture watersheds. Total N and P loads from the pasture watersheds (0.2 kg N ha(-1) and 0.7 kg P ha(-1)) were significantly lower than from the cultivated watersheds (32 kg N ha(-1) and 5 kg P ha(-1)) partly due to lower runoff volumes from the pasture watersheds. Downstream N and P concentrations and per-area loads were much lower than from edge-of-field watersheds. Results demonstrate that a properly managed annual litter application (4.5 Mg ha(-1) or less depending on litter N and P content) with supplemental N should supply necessary nutrients without detrimental water quality impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号