首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: Safety of the airbag supplemental restraint system (airbag) is a well-known concern. Although many lives are saved each year through airbag use, injuries continue to occur, especially to the head. Airbag safety research has focused primarily on severe injuries, while minor and moderate injuries have been largely ignored. METHODS: In this study, 205,977 injury cases from the 1995 to 2001 National Automotive Sampling System (NASS)/ Crashworthiness Data System (CDS) were surveyed to determine the prevalence of AIS 1 and 2 facial and brain loss of consciousness (LOC) injuries and determine if these injuries are a concern. The query was focused on frontal impacts in vehicles equipped with airbags. Only occupants wearing appropriate seatbelts were included in this study so that the airbag would provide occupant protection under optimal conditions. Of the 205,977 injury cases studied, 2.4% met this criterion. RESULTS: From the data gathered, the trends seem to indicate an increase in these specific injuries, both in terms of the total number and the proportion to all injury cases. In 1995, AIS 1 and 2 head injuries accounted for 96.5% of all head injuries caused by airbags. By 2001, the percentage had risen 3.0% to 99.5%. Injuries occurring in vehicles equipped with first-generation versus second generation airbags were compared, and data seem to suggest that there is a higher rate of minor and moderate head injuries when occupants are in second-generation airbag-equipped vehicles, even when appropriate lap and shoulder belts are used. CONCLUSIONS: The short timeframe surveyed prevents drawing meaningful conclusions about statistical significance, but the graphical representations of the data in this study underscore an urgent need for further investigation based on current trends in order to understand the issue of minor and moderate head injury prevention in regard to airbags.  相似文献   

2.
Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant.

Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used.

Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70° angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome.

Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.  相似文献   

3.
Objective: Insurance Institute for Highway Safety (IIHS) high-hooded side impacts were analyzed for matched vehicle tests with and without side airbags. The comparison provides a measure of the effectiveness of side airbags in reducing biomechanical responses for near-side occupants struck by trucks, SUVs, and vans at 50 km/h.

Method: The IIHS moving deformable barrier (MDB) uses a high-hooded barrier face. It weighs 1,500 kg and impacts the driver side perpendicular to the vehicle at 50 km/h. SID IIs dummies are placed in the driver and left second-row seats. They represent fifth percentile female occupants.

IIHS tests were reviewed for matches with one test with a side airbag and another without it in 2003–2007 model year (MY) vehicles. Four side airbag systems were evaluated: (1) curtain and torso side airbags, (2) head and torso side airbag, (3) curtain side airbag, and (4) torso side airbag.

There were 24 matched IIHS vehicle tests: 13 with and without a curtain and torso side airbags, 4 with and without a head and torso side airbag, 5 with and without a side curtain airbag, and 2 with and without a torso airbag. The head, chest, and pelvis responses were compared for each match and the average difference was determined across all matches for a type of side airbag.

Results: The average reduction in head injury criterion (HIC) was 68 ± 16% (P < .001) with curtain and torso side airbags compared to the HIC without side airbags. The average HIC was 296 with curtain and torso side airbags and 1,199 without them. The viscous response (VC) was reduced 54 ± 19% (P < .005) with curtain and torso side airbags. The combined acetabulum and ilium force (7 ± 15%) and pelvic acceleration (?2 ± 17%) were essentially similar in the matched tests.

The head and torso side airbag reduced HIC by 42 ± 30% (P < .1) and VC by 32 ± 26% compared to vehicles without a side airbag. The average HIC was 397 with the side head and torso airbag compared to 729 without it. The curtain airbag and torso airbag only showed lower head responses but essentially no difference in the chest and pelvis responses.

Conclusion: The curtain and torso side airbags effectively reduced biomechanical responses for the head and chest in 50 km/h side impacts with a high-hooded deformable barrier. The reductions in the IIHS tests are directionally the same as estimated fatality reductions in field crashes reported by NHTSA for side airbags.  相似文献   

4.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

5.
OBJECTIVE: Motor vehicle collision (MVC)-related spinal injury is a severe and often permanently disabling injury. In addition, strain injuries have been reported as a common outcome of MVCs. Although advances in automobile crashworthiness have reduced both fatalities and severe injuries, the impact of varying occupant restraint systems (seatbelts and airbags) on thoracolumbar spine injuries is unknown. This study examined the relationship between the occurrence of mild to severe cervical and thoracolumbar spine injury and occupant restraint systems among front seat occupants involved in frontal MVCs. METHODS: A retrospective cohort study was conducted among subjects obtained from the 1995-2004 National Automotive Sampling System. Cases were identified based on having sustained a spine injury of >/=1 on the Abbreviated Injury Scale (AIS), 1990 Revision. Risk risks (RRs) and 95% confidence intervals (CIs) were computed comparing occupant restraint systems with unrestrained occupants. RESULTS: We found an overall incidence of AIS1 cervical (11.8%) and thoracolumbar (3.7%) spinal injury. Seatbelt only restraints were associated with increased cervical AIS1 injury (RR = 1.40, 95% CI 1.04-1.88). However, seatbelt only restraints showed the greatest risk reduction for AIS2 spinal injuries. Airbag only restraints reduced thoracolumbar AIS1 injuries (RR = 0.29, 95% CI 0.08-1.04). Seatbelt combined with airbag use was protective for cervical AIS3+ injury overall (RR = 0.29, 95% CI 0.14-0.58), cervical neurological injury (RR = 0.19, 95% CI 0.05-0.81), and thoracolumbar AIS3+ injury overall (RR = 0.20, 95% CI 0.05-0.70). CONCLUSIONS: The results of this study suggest that seatbelts alone or in combination with an airbag increased the incidence of AIS1 spinal injuries, but provide protection against more severe injury to all regions of the spine. Airbag deployment without seatbelt use did not show increased protection relative to unrestrained occupants.  相似文献   

6.
Current occupant protection assessment for side impact is focused on struck side occupants sitting alone. In a representative sample of tow-away side collisions from the UK, only one-third of front seat occupants in side collisions were alone, on the struck side of the car. The other two-thirds were either a non-struck side occupant alone or a situation where the adjacent seat was also occupied. In terms of restraint protection for non-struck side occupants, belts appeared to be less effective in perpendicular compared to oblique side crashes. Front seat occupancy had bearing on injury outcome. With both front seats occupied, there was a reduction in AIS 27+ injury to belted non-struck side occupants due to a reduction in chest and lower limb injuries. Struck side occupants sustained increased injury rates to the extremities when accompanied by a belted non-struck side occupant but no notable increases in moderate to serious injury to the head, chest, abdomen or pelvis.  相似文献   

7.
Abstract

Objective: Focusing on children (0–17?years), this study aimed to investigate injury and accident characteristics for bicyclists and to evaluate the use and protective effect of bicycle helmets.

Method: This nationwide Swedish study included children who had visited an emergency care center due to injuries from a bicycle crash. In order to investigate the causes of bicycle crashes, data from 2014 to 2016 were analyzed thoroughly (n?=?7967). The causes of the crashes were analyzed and categorized, focusing on 3 subgroups: children 0–6, 7–12, and 13–17?years of age. To assess helmet effectiveness, the induced exposure approach was applied using data from 2006 to 2016 (n?=?24,623). In order to control for crash severity, only bicyclists who had sustained at least one Abbreviated Injury Scale (AIS) 2+ injury (moderate injury or more severe) in body regions other than the head were included.

Results: In 82% of the cases the children were injured in a single-bicycle crash, and the proportion decreased with age (0–6: 91%, 7–12: 84%, 13–17: 77%). Of AIS 2+ injuries, 8% were head injuries and 85% were injuries to the extremities (73% upper extremities and 13% lower extremities). Helmet use was relatively high up to the age of 10 (90%), after which it dropped. Helmets were much less frequently used by teenagers (14%), especially girls. Consistently, the share of head injuries increased as the children got older. Bicycle helmets were found to reduce all head injuries by 61% (95% confidence interval [CI], 10: +/? 10%) and AIS 2+ head injuries by 68% (95% CI, 12: +/? 12%). The effectiveness in reducing face injuries was lower (45% CI +/? 10% for all injuries and 54% CI +/? 32% for AIS2+ injuries).

Conclusions: This study indicated that bicycle helmets effectively reduce injuries to the head and face. The results thus point to the need for actions aimed at increasing helmet use, especially among teenagers. Protective measures are necessary to further reduce injuries, especially to the upper extremities.  相似文献   

8.
Objectives: An airbag system for motorcycle applications was developed and marketed in 2006 followed by many research projects on the system. In the airbag system, the bag should be supported during the kinetic energy–absorbing period of a rider in a collision. The previously developed system employed a configuration in which motorcycle structures support the airbag, such as a gauge unit and/or a steering structure. The supporting structure functions to receive the reaction force to hold the airbag during a crash to properly absorb the rider's kinetic energy. However, the previous system requires a larger area for this reaction structure and is applicable only to the motorcycles that can provide that area. To overcome this limitation, we propose an airbag system employing another concept. In this concept, the airbag does not use its vehicle structures as a reaction structure but uses the structures of an opposing vehicle, such as doors and/or pillars of an opposing vehicle. In this project, we aim to verify the effectiveness of the proposed system when installed in a motorcycle that cannot provide a larger area for the reaction structure.

Methods: In the system with this concept, it is assumed that the occupant protection performance is largely affected depending on impact configurations. Accordingly, full-scale motorcycle-to-car crash tests using 125 cm3 scooter-type models with and without the proposed system were conducted in various impact configurations. The 7 impact configurations specified in ISO 13232 were selected as the test configurations. Injury variables and injury indices of head, neck, chest, and abdomen were evaluated with the motorcyclist dummy.

Results: Injury variables and indices obtained from the crash tests with the airbag were compared to those of the baseline tests. In 2 impact configurations, the airbags were supported by the side structures of the opposing vehicle and performed to reduce the injury variable of head and/or chest compared to that of the baseline test.

Conclusion: Through the crash tests, beneficial protection effects of the airbag system were confirmed in particular impact configurations. No significant risk for the occupant due to the airbag was observed in the conducted crash tests. It was concluded that the proposed airbag system has feasibility to reduce rider injury in a collision of a motorcycle without sufficient reaction structure.  相似文献   

9.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

10.
To investigate the effects of vehicle impact velocity and front-end structure on the dynamic responses of child pedestrians, an extensive parametric study was carried out using two child mathematical models at 6 and 15 years old. The effect of the vehicle impact velocity was studied at 30, 40, and 50 km/h in terms of the head linear velocity, impact angle, and head angular velocity as well as various injury parameters concerning the head, chest, pelvis, and lower extremities. The variation of vehicle front-end shape was determined according to the shape corridors of modern vehicles, while the stiffness characteristics of the bumper, hood edge, and hood were varied within stiffness corridors obtained from dynamic component tests. The simulation results show that the vehicle impact speed is of great importance on the kinematics and resulting injury severity of child pedestrians. A significant reduction in all injury parameters can be achieved as the vehicle impact speed decreases to 30 km/h. The head and lower extremities of children are at higher injury risks than other body regions. Older children are exposed to higher injury risks to the head and lower leg, whereas younger ones sustain more severe impact loads to the pelvis and upper leg. The results from factorial analysis indicate that the hood-edge height has a significant effect on the kinematics and head impact responses of children. A higher hood edge could reduce the severity of head impact for younger children, but aggravate the risks of head injury for older ones. A significant interaction exists between the bumper height and the hood-edge height on the head impact responses of younger child. Nevertheless, improving the energy absorption performance of the hood seems effective for mitigating the severity of head injuries for children.  相似文献   

11.
Abstract

Objective: The goal of the study was to develop experimental chest loading conditions that would cause up to Abbreviated Injury Scale (AIS) 2 chest injuries in elderly occupants in moderate-speed frontal crashes. The new set of experimental data was also intended to be used in the benchmark of existing thoracic injury criteria in lower-speed collision conditions.

Methods: Six male elderly (age >63) postmortem human subjects (PMHS) were exposed to a 35?km/h (nominal) frontal sled impact. The test fixture consisted of a rigid seat, rigid footrest, and cable seat back. Two restraint conditions (A and B) were compared. Occupants were restrained by a force-limited (2.5?kN [A] and 2?kN [B]) seat belt and a preinflated (16?kPa [A] and 11?kPa [B]; airbag). Condition B also incorporated increased seat friction. Matching sled tests were carried out with the THOR-M dummy. Infra-red telescoping rod for the assessment of chest compression (IRTRACC) readings were used to compute chest injury risk. PMHSs were exposed to a posttest injury assessment. Tests were carried out in 2 stages, using the outcome of the first one combined with a parametric study using the THUMS model to adjust the test conditions in the second. All procedures were approved by the relevant ethics board.

Results: Restraint condition A resulted in an unexpected high number of rib fractures (fx; 10, 14, 15 fx). Under condition B, the adjustment of the relative airbag/occupant position combined with a lower airbag pressure and lower seat belt load limit resulted in a reduced pelvic excursion (85 vs. 110?mm), increased torso pitch and a substantially lower number of rib fractures (1, 0, 4 fx) as intended.

Conclusions: The predicted risk of rib fractures provided by the THOR dummy using the Cmax and PC Score injury criteria were lower than the actual injuries observed in the PMHS tests (especially in restraint condition A). However, the THOR dummy was capable of discriminating between the 2 restraint scenarios. Similar results were obtained in the parametric study with the THUMS model.  相似文献   

12.
Abstract

Objective: The purpose of this study is to investigate the injury patterns of noncatastrophic accidents by individual age groups.

Methods: Data were collected from the Korean In-Depth Accident Study database based on actual accident investigation. The noncatastrophic criteria were classified according to U.S. experts from the Centers for Disease Control and Prevention’s recommendations for field triage guidelines of high-risk automobile crash criteria by vehicle intrusions more than 12 in. on occupant sites (including the roof) and more than 18 in. on any site. The Abbreviated Injury Scale (AIS) was used to determine injury patterns for each body region. Severely injured patients were classified as Maximum Abbreviated Injury Scale (MAIS) 3 or higher.

Results: In this study, the most significant injury regions were the head and neck, extremities, and thorax. In addition, the incidence of severe injury among elderly patients was nearly 1.6 times higher than that of non-elderly patients. According to age group, injured body regions among the elderly were the thorax, head and neck, and extremities, in that order. For the non-elderly groups, these were head and neck, extremities, and thorax. Severe injury rates were slightly different for the elderly group (head and neck, abdomen) and non-elderly group (thorax, head and neck).

Conclusions: In both age groups, the rate of severe injury is proportional to an increase in crush extent zone. Front airbag deployment may have a relatively significant relationship to severe injuries.  相似文献   

13.
Abstract

Objective: Traffic fatalities among motorcycle users are intolerably high in Thailand. They account for 73% of the total number of road fatalities. Children are also among these victims. To improve countermeasures and design of protection equipment, understanding the biomechanics of motorcycle users under impact conditions is necessary. The objective of this work is to analyze the overall kinematics and injuries sustained by riders and child pillion passengers in various accident configurations.

Methods: Motorcycle accident data were analyzed. Common accident scenarios and impact parameters were identified. Two numerical approaches were employed. The multibody model was validated with a motorcycle crash test and used to generate possible accident cases for various impact conditions specified to cover all common accident scenarios. Specific impact conditions were selected for detailed finite element analysis. The finite element simulations of motorcycle-to-car collisions were conducted to provide insight into kinematics and injury mechanisms.

Results: Global kinematics found when the motorcycle’s front wheel impacts a car (config-MC) highlighted the translation motion of both the rider and passenger toward the impact position. The rider’s trunk impacted the handlebar and the head either impacted the car or missed. The hood constituted the highest head impact occurrence for this configuration. The child mostly impacted the rider’s back. Different kinematics were found when car impacted the lateral side of the motorcycle (config-CM). Upper bodies of both rider and child were laterally projected toward the car front. The windshield constituted the highest proportion of head impacts. The hood and A-pillar recorded a moderate proportion. The rider in finite element simulations with config-MC experienced high rib stress, lung strain, and pressure beyond the injury limit. A high head injury criterion was observed when the head hit the car. However, the simulation with config-CM exhibited high lower extremities stress and lung pressure in both occupants. Hyperextension of the rider’s neck was observed. The cumulative strain damage measure of the child’s brain was higher than the threshold for diffuse axonal injury (DAI).

Conclusions: This study revealed 2 kinematics patterns and injury mechanisms. Simulations with config-MC manifested a high risk of head and thorax injury to the rider but a low risk of severe injury to the child. Thorax injury to the rider due to handlebar impact was only found in simulations with config-MC. However, a high risk of skull, lower extremity, brain, and neck injuries were more pronounced for cases with config-CM. A high risk of DAI was also noticed for the child. In simulations with config-CM the child exhibited a higher risk of severe injury.  相似文献   

14.
INTRODUCTION: This study analyzes the in-service performance of roadside hardware on the entire urban State Route system in Washington State by developing multivariate statistical models of injury severity in fixed-object crashes using discrete outcome theory. The objective is to provide deeper insight into significant factors that affect crash severities involving fixed roadside objects, through improved statistical efficiency along with disaggregate and multivariate analysis. METHOD: The developed models are multivariate nested logit models of injury severity and they are estimated with statistical efficiency using the method of full information maximum likelihood. RESULTS: The results show that leading ends of guardrails and bridge rails, along with large wooden poles (e.g. trees and utility poles) increase the probability of fatal injury. The face of guardrails is associated with a reduction in the probability of evident injury, and concrete barriers are shown to be associated with a higher probability of lower severities. Other variables included driver characteristics, which showed expected results, validating the model. For example, driving over the speed limit and driving under the influence of alcohol increase the probability of fatal accidents. Drivers that do not use seatbelts are associated with an increase in the probability of more severe injuries, even when an airbag is activated. IMPACT ON INDUSTRY: The presented models show the contribution of guardrail leading ends toward fatal injuries. It is therefore important to use well-designed leading ends and to upgrade badly performing leading ends on guardrails and bridges. The models also indicate the importance of protecting vehicles from crashes with rigid poles and tree stumps, as these are linked with greater severities and fatalities.  相似文献   

15.
Abstract

Objectives: With regard to the pediatric population involved in vehicle side impact collisions, epidemiologic data can be used to identify specific injury-producing conditions and offer possible safety technology effectiveness through population-based estimates. The objective of the current study was to perform a field data analysis to investigate injury patterns and sources of injury to 4- to 10-year-olds in side and oblique impacts to determine the potential effect of updated side impact regulations and airbag safety countermeasures.

Methods: The NASS-CDS, years 1991 to 2014, was analyzed in the current study. The Abbreviated Injury Scale (AIS) 2005–Update 2008 was used to determine specific injuries and injury severities. Injury distributions were examined by body region as specified in the AIS dictionary and the Maximum AIS (MAIS). Children ages 4 to 10 were examined in this study. All occupant seating locations were investigated. Seating positions were designated by row and as either near side, middle, or far side. Side impacts with a principal direction of force (PDOF) between 2:00 and 4:00 as well as between 8:00 and 10:00 were included. Restraint use was documented only as restrained or unrestrained and not whether the restraint was being used properly. Injury distribution by MAIS, body region, and source of injury were documented. Analysis regarding occupant injury severity, body region injured, and injury source was performed by vehicle model year to determine the effect of updated side impact testing regulation and safety countermeasures. Because the aim of the study was to identify the most common injury patterns and sources, only unweighted data were analyzed.

Results: Main results obtained from the current study with respect to 4- to 10-year-old child occupants in side impact were that a decrease was observed in frequency of MAIS 1–3 injuries; injuries to the head, face, and extremities; as well as injuries caused by child occupant interaction with the vehicle interior and seatback support structures in 1998 model year passenger cars and newer.

Conclusions: Results from this study could be useful in design advances of pediatric anthropomorphic test devices, child restraints, as well as vehicles and their safety countermeasure systems.  相似文献   

16.
Detailed layer-by-layer autopsy of the head and neck was performed on a prospective series of 73 fatally injured motorcyclists in order to identify occult injuries, particularly soft tissue neck injuries such as hemorrhage of vertebral and carotid arteries. The fatal cases were gathered as part of a larger study of 1,082 on-scene in-depth motorcycle crash investigations in Thailand. Detailed neck dissection was done on nearly all fatal cases. Injuries were coded using the 1990 revision of the Abbreviated Injury Scale (AIS 90) and an Injury Severity Score (ISS) was determined for each case. Additional AIS codes are proposed for neck injuries that were often identified during the detailed autopsy procedures, but which are not listed explicitly among existing AIS codes. Helmet use was determined based on analysis of injury patterns and helmet damage with consideration also given to witness statements. Both helmeted and unhelmeted motorcyclists showed a high frequency of occult neck injuries such as hemorrhages in the carotid sheath or surrounding the vertebral arteries, phrenic nerve, or brachial plexus. These soft tissue neck injuries sometimes accompanied more obvious injuries to cervical vertebrae or spinal cord, but about one-third of riders had no obvious injury to suggest the presence of occult neck injury. Twenty-eight motorcyclists had been wearing a helmet at the start of the collision sequence, but only nine helmets remained in place through the entire collision event. Helmeted riders showed more severe somatic (below-the-neck) injuries than unhelmeted riders, suggesting helmeted riders are less likely to die in low-threat accidents with somatic injuries below AIS-3. The most significant finding of this study was the identification of serious internal neck injuries despite the absence of external physical evidence of trauma to the neck. Virtually all riders with significant head injuries showed some of these soft tissue neck injuries. Approximately one-third of the critically injured riders who survived at least a few hours before death showed serious occult soft tissue neck injuries.  相似文献   

17.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

18.
Objective: Thoracic side airbags (tSABs) deploy within close proximity to the occupant. Their primary purpose is to provide a protective cushion between the occupant and the intruding door. To date, various field studies investigating their injury mitigation has been limited and contradicting. The research develops efficacy estimations associated for seat-mounted tSABs in their ability to mitigate injury risk from the German collision environment.

Methods: A matched cohort study using German In-Depth Accident Study (GIDAS) data was implemented and aims to investigate the efficacy of seat-mounted tSAB units in preventing thoracic injury. Inclusion in the study required a nearside occupant involved in a lateral collision where the target vehicle exhibited a design year succeeding 1990. Collisions whereby a tSAB deployed were matched on a 1:n basis to collisions of similar severity where no airbag was available in the target vehicle. The outcome of interest was an incurred bodily or thoracic regional injury. Through conditional logistic regression, an estimated efficacy value for the deployed tSAB was determined.

Results: A total of 255 collisions with the deployed tSAB matched with 414 collisions where no tSAB was present. For the given sample, results indicated that the deployed tSAB was not able to provide an unequivocal benefit to the occupant thoracic region, because individuals exposed to the deployed tSAB were at equal risk of injury (Thorax Maximum Abbreviated Injury Scale (Tho.MAIS)2+ odds ratio [OR] = 1.04, 95% confidence interval [CI], 0.41–2.62; Tho.MAIS3+ OR = 1.15, 95% CI, 0.41–3.18). When attempting to isolate an effect for skeletal injuries, a similar result was obtained. Yet, when the tSAB was coupled with a head curtain airbag, a protective effect became apparent, most noticeable for head/face/neck (HFN) injuries (OR = 0.59, 95% CI, 0.21–1.65).

Conclusion: The reduction in occupant HFN injury risk associated with the coupled tSAB and curtain airbag may be attributable to its ability to provide coverage over previous mechanisms of injury. Yet, the sole presence of the tSAB showed no ability to provide additional benefit for the occupant's thoracic region. Future work should identify mechanisms of injury in tSAB cases and attempt to quantify improvements in the vehicle's ability to resist intrusion.  相似文献   


19.

Introduction

Longitudinal barriers, such as guardrails, are designed to prevent a vehicle that leaves the roadway from impacting a more dangerous object while minimizing the risk of injury to the vehicle occupants. Current full-scale test procedures for these devices do not consider the effect of occupant restraints such as seatbelts and airbags. The purpose of this study was to determine the extent to which restraints are used or deployed in longitudinal barrier collisions and their subsequent effect on occupant injury.

Methods

Binary logistic regression models were generated to predict occupant injury risk using data from the National Automotive Sampling System / Crashworthiness Data System from 1997 through 2007.

Results

In tow-away longitudinal barrier crashes, airbag deployment rates were 70% for airbag-equipped vehicles. Compared with unbelted occupants without an airbag available, seat belt restrained occupants with an airbag available had a dramatically decreased risk of receiving a serious (MAIS 3+) injury (odds-ratio (OR) = 0.03; 95% CI: 0.004-0.24). A similar decrease was observed among those restrained by seat belts, but without an airbag available (OR = 0.03; 95% CI: 0.001- 0.79). No significant differences in risk of serious injuries were observed between unbelted occupants with an airbag available compared with unbelted occupants without an airbag available (OR = 0.53; 95% CI = 0.10-2.68).

Impact on Industry

This study refutes the perception in the roadside safety community that airbags rarely deploy in frontal barrier crashes, and suggests that current longitudinal barrier occupant risk criteria may over-estimate injury potential for restrained occupants involved in a longitudinal barrier crash.  相似文献   

20.
Objective: We studied the correlation between airbag deployment and eye injuries using 2 different data sets.

Methods: The registry of the Finnish Road Accident (FRA) Investigation Teams was analyzed to study severe head- and eyewear-related injuries. All fatal passenger car or van accidents that occurred during the years 2009–2012 (4 years) were included (n = 734). Cases in which the driver's front airbag was deployed were subjected to analysis (n = 409). To determine the proportion of minor, potentially airbag-related eye injuries, the results were compared to the data for all new eye injury patients (n = 1,151) recorded at the Emergency Clinic of the Helsinki University Eye Hospital (HUEH) during one year, from May 1, 2011, to April 30, 2012.

Results: In the FRA data set, the unbelted drivers showed a significantly higher risk of death (odds ratio [OR] = 5.89, 95% confidence interval [CI], 3.33–10.9, P = 2.6E-12) or of sustaining head injuries (OR = 2.50, 95% CI, 1.59–3.97, P = 3.8E-5). Only 4 of the 1,151 HUEH patients were involved in a passenger car accident. In one of the crashes, the airbag operated, and the belted driver received 2 sutured eye lid wounds and showed conjunctival sugillation. No permanent eye injuries were recorded during the follow-up. The calculated annual airbag-related eye injury incidence was less than 1/1,000,000 people, 4/100,000 accidents, and 4/10,000 injured occupants.

Conclusions: Airbag-related eye injuries occurred very rarely in car accidents in cases where the occupant survived and the restraint system was appropriately used. Spectacle use did not appear to increase the risk of eye injury in restrained occupants.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号