首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper provides a review on the following issues: the differences in injury patterns between adults and children under similar loading conditions during an automotive crash event. Because of the recent awareness and the ensuing necessity, as an example, injuries including fatalities due to airbag deployment are discussed. Biomechanical differences explain the varying injury patterns and mechanisms of injury. The commonly adopted scaling techniques for predicting pediatric tolerances are described. A comparison of the biomechanical properties of the pediatric and adult structures is given. Some insight is provided with regard to the use of these data to develop validated mathematical models of pediatric structures. The paper concludes with recommendations for further research.  相似文献   

2.
The clinical presentation of cervical and basilar skull fractures following bead impact is often complex, particularly when multiple noncontiguous fractures are present. Based on the results of 22 human cadaver head-neck impact experiments, a biomechanical framework of spinal injury is developed in which these complex cases may be better understood. This includes the significance of head rebound, head and neck decoupling, cervical spine buckling, cervical injury mechanisms, basilar skull fractures, and cervical spine tolerance. These data also demonstrate that compliant pads significantly increase the risk for spinal injury though they also significantly reduce peak head force and the head injury criteria (p < 0.04). On the basis of these observations, we hypothesize that impact injury should be modeled as the dynamic response of two large masses, coupled by a segmented curved beam-column composed of seven small masses with interposed nonlinear viscoelastic flexibility elements.  相似文献   

3.
Objective: Serious head and cervical spine injuries have been shown to occur mostly independent of one another in pure rollover crashes. In an attempt to define a dynamic rollover crash test protocol that can replicate serious injuries to the head and cervical spine, it is important to understand the conditions that are likely to produce serious injuries to these 2 body regions. The objective of this research is to analyze the effect that impact factors relevant to a rollover crash have on the injury metrics of the head and cervical spine, with a specific interest in the differentiation between independent injuries and those that are predicted to occur concomitantly.

Methods: A series of head impacts was simulated using a detailed finite element model of the human body, the Total HUman Model for Safety (THUMS), in which the impactor velocity, displacement, and direction were varied. The performance of the model was assessed against available experimental tests performed under comparable conditions. Indirect, kinematic-based, and direct, tissue-level, injury metrics were used to assess the likelihood of serious injuries to the head and cervical spine.

Results: The performance of the THUMS head and spine in reconstructed experimental impacts compared well to reported values. All impact factors were significantly associated with injury measures for both the head and cervical spine. Increases in impact velocity and displacement resulted in increases in nearly all injury measures, whereas impactor orientation had opposite effects on brain and cervical spine injury metrics. The greatest cervical spine injury measures were recorded in an impact with a 15° anterior orientation. The greatest brain injury measures occurred when the impactor was at its maximum (45°) angle.

Conclusions: The overall kinetic and kinematic response of the THUMS head and cervical spine in reconstructed experiment conditions compare well with reported values, although the occurrence of fractures was overpredicted. The trends in predicted head and cervical spine injury measures were analyzed for 90 simulated impact conditions. Impactor orientation was the only factor that could potentially explain the isolated nature of serious head and spine injuries under rollover crash conditions. The opposing trends of injury measures for the brain and cervical spine indicate that it is unlikely to reproduce the injuries simultaneously in a dynamic rollover test.  相似文献   

4.
Objective: Motor vehicle occupants aged 8 to 12 years are in transition, in terms of both restraint use (booster seat or vehicle belt) and anatomical development. Rear-seated occupants in this age group are more likely to be inappropriately restrained than other age groups, increasing their vulnerability to spinal injury. The skeletal anatomy of an 8- to 12-year-old child is also in developmental transition, resulting in spinal injury patterns that are unique to this age group. The objective of this study is to identify the upper spine injuries commonly experienced in the 8- to 12-year-old age group so that anthropomorphic test devices (ATDs) representing this size of occupant can be optimized to predict the risk of these injuries.

Methods: Motor vehicle crash cases from the National Trauma Data Bank (NTDB) were analyzed to characterize the location and nature of cervical and thoracic spine injuries in 8- to 12-year-old crash occupants compared to younger (age 0–7) and older age groups (age 13–19, 20–39).

Results: Spinal injuries in this trauma center data set tended to occur at more inferior vertebral levels with older age, with patients in the 8- to 12-year-old group diagnosed with thoracic injury more frequently than cervical injury, in contrast to younger occupants, for whom the proportion of cases with cervical injury outnumbered the proportion of cases with thoracic injury. With the cervical spine, a higher proportion of 8- to 12-year-olds had upper spine injury than adults, but a substantially lower proportion of 8- to 12-year-olds had upper spine injury than younger children. In terms of injury type, the 8- to 12-year-old group’s injury patterns were more similar to those of teens and adults, with a higher relative proportion of fracture than younger children, who were particularly vulnerable to dislocation and soft tissue injuries. However, unlike for adults and teens, catastrophic atlanto-occipital dislocations were still more common than any other type of dislocation for 8- to 12-year-olds and vertebral body fractures were particularly frequent in this age group.

Conclusions: Spinal injury location in the cervical and thoracic spine moved downward with age in this trauma center data set. This shift in injury pattern supports the need for measurement of thoracic and lower cervical spine loading in ATDs representing the 8- to 12-year-old age group.  相似文献   


5.
OBJECTIVE: Child crash dummies are conventionally used for safety performance evaluations of the child restraint system (CRS) in vehicle crash tests. To investigate injuries to various body regions of a child in detail, mathematical models are useful, and provide information that cannot be analyzed by crash dummies. Therefore, in the present research, a finite element (FE) model of a 3-year-old child has been developed by model-based scaling from the AM50 human FE model, THUMS (Total HUman body for Safety). METHODS: The dimensions of each body region were based on the anthropometry data of United States children, and material properties of child bone were estimated from data reported in the literature. Neck flexion, thorax impact responses, and torso flexion were validated against the response corridor of the 3-year-old Hybrid III dummy in calibration tests. A test of lap belt loading to the abdomen was also conducted. FE models of two different types of CRS, a 5-point harness and a tray shield CRS, were also made, and ECE R44 sled impact test simulations were conducted using the child FE model. RESULTS: The characteristics of the child FE model proved to be close to the Hybrid III and child volunteer corridor. In the ECE R44 sled test simulations using the child FE model, the head movement down and head rotation were large in the 5-point harness CRS, and chest deflection was large in the tray shield CRS. In both CRS types, the whole spine flexed in the child FE model. This behavior is different from that of the Hybrid III, where the thorax spine is stiff and only the cervical spine and lumbar spine flex. CONCLUSIONS: Although this child FE model has several limitations in areas such as the anatomical shapes and material properties of a child, this model can be a useful tool to examine the behavior of a child in impacts, which may be difficult to predict by using the Hybrid III dummy with its stiff thorax spine box.  相似文献   

6.
Objective: The aim of this study was to investigate the whole spine alignment in automotive seated postures for both genders and the effects of the spinal alignment patterns on cervical vertebral motion in rear impact using a human finite element (FE) model.

Methods: Image data for 8 female and 7 male subjects in a seated posture acquired by an upright open magnetic resonance imaging (MRI) system were utilized. Spinal alignment was determined from the centers of the vertebrae and average spinal alignment patterns for both genders were estimated by multidimensional scaling (MDS). An occupant FE model of female average size (162 cm, 62 kg; the AF 50 size model) was developed by scaling THUMS AF 05. The average spinal alignment pattern for females was implemented in the model, and model validation was made with respect to female volunteer sled test data from rear end impacts. Thereafter, the average spinal alignment pattern for males and representative spinal alignments for all subjects were implemented in the validated female model, and additional FE simulations of the sled test were conducted to investigate effects of spinal alignment patterns on cervical vertebral motion.

Results: The estimated average spinal alignment pattern was slight kyphotic, or almost straight cervical and less-kyphotic thoracic spine for the females and lordotic cervical and more pronounced kyphotic thoracic spine for the males. The AF 50 size model with the female average spinal alignment exhibited spine straightening from upper thoracic vertebra level and showed larger intervertebral angular displacements in the cervical spine than the one with the male average spinal alignment.

Conclusions: The cervical spine alignment is continuous with the thoracic spine, and a trend of the relationship between cervical spine and thoracic spinal alignment was shown in this study. Simulation results suggested that variations in thoracic spinal alignment had a potential impact on cervical spine motion as well as cervical spinal alignment in rear end impact condition.  相似文献   


7.
There is little data available on the responses of the human cervical spine to tensile loading. Such tests are mechanistically and technically challenging due to the variety of end conditions that need to be imposed and the difficulty of strong specimen fixation. As a result, spine specimens need to be tested using fairly complex, and potentially compliant, apparati in order to fully characterize the mechanical responses of each specimen. This, combined with the relatively high stiffness of human spine specimens, can result in errors in stiffness calculations. In this study, 18 specimen preparations were tested in tension. Tests were performed on whole cervical spines and on spine segments. On average, the linear stiffness of the segment preparations was 257 N/mm, and the stiffness of the whole cervical spine was 48 N/mm. The test frame was found to have a stiffness of 933 N/mm. Assembling a whole spine from a series combination of eight segments with a stiffness of 257 N/mm results in an estimated whole spine stiffness of 32.1 N/mm (32% error). The segment stiffnesses were corrected by assuming that the segment preparation stiffness is a series combination of the stiffnesses of the segment and the frame. This resulted in an average corrected segment stiffness of 356 N/mm. Taking the frame compliance into account, the whole spine stiffness is 51 N/mm. A series combination of eight segments using the corrected stiffnesses results in an estimated whole spine stiffness of 45.0 N/mm (12% error). We report both linear and nonlinear stiffness models for male spines and conclude that the compliance of the frame and the fixation must be quantified in all tension studies of spinal segments. Further, reported stiffness should be adjusted to account for frame and fixation compliance.  相似文献   

8.
A database was established by collecting 919 cases of claimed cervical spine disorders (CSDs) sustained in automotive accidents. All cases had a sick leave time of more than 4 weeks. Data was obtained from a major Swiss accident insurer. An assessment scheme was developed that took into account technical, medical, and biomechanical aspects. All cases were evaluated according to this scheme. The overall biomechanical assessment, that stated the extent to which the symptoms claimed could be explained by the impact, was found to be significantly influenced by the patient's history of CSD in terms of preexisting damage or preexisting symptoms. In 52% of the assessed cases, the CSD claimed could be explained with a combination of neck loading and also by considering the patient's medical history. Performing a solely technical analysis of the collision circumstances or a purely medical evaluation based on a Quebec Task Force (QTF) grade alone are insufficient to assess the accident-related explicability of claimed CSD. Biomechanically relevant individual factors have to be considered.  相似文献   

9.
Objectives: This paper quantifies pediatric thoracoabdominal response to belt loading to guide the scaling of existing adult response data and to assess the validity of a juvenile porcine abdominal model for application to the development of physical and computational models of the human child. Methods: Table-top belt-loading experiments were performed on 6, 7, and 15 year-old pediatric post-mortem human subjects (PMHS). Response targets are reported for diagonal belt and distributed loading of the anterior thorax and for horizontal belt loading of the abdomen. Results: The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The thoraces of the PMHS were as stiff as, or slightly more stiff than, published adult corridors. Conclusions: An assessment of age-related changes in thoracic stiffness suggests that the effective stiffness of the chest increases through the fourth decade of life and then decreases, resulting in stiffness values similar for children and elderly adults.  相似文献   

10.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

11.
The effect of muscle activation on neck response   总被引:3,自引:0,他引:3  
Prevention of neck injuries due to complex loading, such as occurs in traffic accidents, requires knowledge of neck injury mechanisms and tolerances. The influence of muscle activation on outcome of the injuries is not clearly understood. Numerical simulations of neck injury accidents can contribute to increase the understanding of injury tolerances. The finite element (FE) method is suitable because it gives data on stress and strain of individual tissues that can be used to predict injuries based on tissue level criteria.The aim of this study was to improve and validate an anatomically detailed FE model of the human cervical spine by implement neck musculature with passive and active material properties. Further, the effect of activation time and force on the stresses and strains in the cervical tissues were studied for dynamic loading due to frontal and lateral impacts.The FE model used includes the seven cervical vertebrae, the spinal ligaments, the facet joints with cartilage, the intervertebral disc, the skull base connected to a rigid head, and a spring element representation of the neck musculature. The passive muscle properties were defined with bilinear force-deformation curves and the active properties were defined using a material model based on the Hill equation. The FE model's responses were compared to volunteer experiments for frontal and lateral impacts of 15 and 7 g. Then, the active muscle properties where varied to study their effect on the motion of the skull, the stress level of the cortical and trabecular bone, and the strain of the ligaments.The FE model had a good correlation to the experimental motion corridors when the muscles activation was implemented. For the frontal impact a suitable peak muscle force was 40 N/cm2 whereas 20 N/cm2 was appropriate for the side impact. The stress levels in the cortical and trabecular bone were influenced by the point forces introduced by the muscle spring elements; therefore a more detailed model of muscle insertion would be preferable. The deformation of each spinal ligament was normalized with an appropriate failure deformation to predict soft tissue injury. For the frontal impact, the muscle activation turned out to mainly protect the upper cervical spine ligaments, while the musculature shielded all the ligaments disregarding spinal level for lateral impacts. It is concluded that the neck musculature does not have the same protective properties during different impacts loadings.  相似文献   

12.
OBJECTIVE: This study was undertaken to develop biomechanical corridors applicable to the small-sized female in side impacts. METHODS: Sled tests were conducted using post mortem human subjects at a velocity of 6.7 m/s. Three chestbands were used to compute deflection-time histories at the axilla, xyphoid process, and tenth rib levels. Triaxial accelerometers were fixed to the upper and lower spine and sacrum to record acceleration-time histories. Specimens contacted the load wall with varying initial conditions (rigid and padded; flat wall and offset) from which impact forces to the thoracic, abdominal, and pelvic regions were obtained using load cell data. Adopting signal processing and mass-based scaling methods, corridors were derived for forces, accelerations, and chest deflections at three levels for all initial conditions. RESULTS: All time history corridors were expressed as mean plus/minus one standard deviation and provided in the article. CONCLUSIONS: Acceleration-, deflection-, and force-time corridors obtained for the chest and pelvic regions of the human body will assist in the assessment of anthropomorphic test devices used in crashworthiness evaluations.  相似文献   

13.
Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk.

Methods: The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity—that is, knee ligament rupture and long bone fracture—was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design.

Results: Newer passenger cars exhibited a “flatter” front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk.

Conclusions: The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.  相似文献   


14.
钢筋与混凝土界面的脱粘是钢筋混凝土材料与结构的主要失效形式之一。针对建立的几何剪切筒模型和选取的常用实验加载方式,对3种不同损伤模型推导出循环荷载作用下钢筋与混凝土界面脱粘应力解析模型;借助描述疲劳裂纹扩展的Paris公式,进一步研究和分析了界面疲劳脱粘速率及界面疲劳裂纹扩展长度与循环加载次数的关系;同时分析了材料刚度衰减对疲劳裂纹扩展速率和扩展长度的影响。笔者对钢筋与混凝土界面的疲劳特性研究所建立的损伤模型和分析方法,为混凝土结构的安全设计及其寿命评估提供一个新思路。  相似文献   

15.
Objective: The objective of this study was to determine the influence of age and injury mechanism on cervical spine tolerance to injury from head contact loading using survival analysis.

Methods: This study analyzed data from previously conducted experiments using post mortem human subjects (PMHS). Group A tests used the upright intact head–cervical column experimental model. The inferior end of the specimen was fixed, the head was balanced by a mechanical system, and natural lordosis was removed. Specimens were placed on a testing device via a load cell. The piston applied loading at the vertex region. Spinal injuries were identified using medical images. Group B tests used the inverted head–cervical column experimental model. In one study, head–T1 specimens were fixed distally, and C7–T1 joints were oriented anteriorly, preserving lordosis. Torso mass of 16 kg was added to the specimen. In another inverted head–cervical column study, occiput–T2 columns were obtained, an artificial head was attached, T1–T2 was fixed, C4–C5 disc was maintained horizontal in the lordosis posture, and C7–T1 was unconstrained. The specimens were attached to the drop test carriage carrying a torso mass of 15 kg. A load cell at the inferior end measured neck loads in both studies. Axial neck force and age were used as the primary response variable and covariate to derive injury probability curves using survival analysis.

Results: Group A tests showed that age is a significant (P < .05) and negative covariate; that is, increasing age resulted in decreasing force for the same risk. Injuries were mainly vertebral body fractures and concentrated at one level, mid-to-lower cervical spine, and were attributed to compression-related mechanisms. However, age was not a significant covariate for the combined data from group B tests. Both group B tests produced many soft tissue injuries, at all levels, from C1 to T1. The injury mechanism was attributed to mainly extension. Multiple and noncontiguous injuries occurred. Injury probability curves, ±95% confidence intervals, and normalized confidence interval sizes representing the quality of the mean curve are given for different data sets.

Conclusions: For compression-related injuries, specimen age should be used as a covariate or individual specimen data may be prescaled to derive risk curves. For distraction- or extension-related injuries, however, specimen age need not be used as a covariate in the statistical analysis. The findings from these tests and survival analysis indicate that the age factor modulates human cervical spine tolerance to impact injury.  相似文献   


16.
17.
Abstract

Objective: This study aimed to reconstruct 11 motor vehicle crashes (6 with thoracolumbar fractures and 5 without thoracolumbar fractures) and analyze the fracture mechanism, fracture predictors, and associated parameters affecting thoracolumbar spine response.

Methods: Eleven frontal crashes were reconstructed with a finite element simplified vehicle model (SVM). The SVM was tuned to each case vehicle and the Total HUman Model for Safety (THUMS) Ver. 4.01 was scaled and positioned in a baseline configuration to mimic the documented precrash driver posture. The event data recorder crash pulse was applied as a boundary condition. For the 6 thoracolumbar fracture cases, 120 simulations to quantify uncertainty and response variation were performed using a Latin hypercube design of experiments (DOE) to vary seat track position, seatback angle, steering column angle, steering column position, and D-ring height. Vertebral loads and bending moments were analyzed, and lumbar spine indices (unadjusted and age-adjusted) were developed to quantify the combined loading effect. Maximum principal strain and stress data were collected in the vertebral cortical and trabecular bone. DOE data were fit to regression models to examine occupant positioning and thoracolumbar response correlations.

Results: Of the 11 cases, both the vertebral compression force and bending moment progressively increased from superior to inferior vertebrae. Two thoracic spine fracture cases had higher average compression force and bending moment across all thoracic vertebral levels, compared to 9 cases without thoracic spine fractures (force: 1,200.6 vs. 640.8 N; moment: 13.7 vs. 9.2?Nm). Though there was no apparent difference in bending moment at the L1–L2 vertebrae, lumbar fracture cases exhibited higher vertebral bending moments in L3–L4 (fracture/nonfracture: 45.7 vs. 33.8?Nm). The unadjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 9 of the 11 cases (sensitivity?=?1.0; specificity?=?0.6). The age-adjusted lumbar spine index correctly predicted thoracolumbar fracture occurrence for 10 of the 11 cases (sensitivity?=?1.0; specificity?=?0.8). The age-adjusted principal stress in the trabecular bone was an excellent indicator of fracture occurrence (sensitivity?=?1.0; specificity?=?1.0). A rearward seat track position and reclined seatback increased the thoracic spine bending moment by 111–329%. A more reclined seatback increased the lumbar force and bending moment by 16–165% and 67–172%, respectively.

Conclusions: This study provided a computational framework for assessing thoracolumbar fractures and also quantified the effect of precrash driver posture on thoracolumbar response. Results aid in the evaluation of motor vehicle crash–induced vertebral fractures and the understanding of factors contributing to fracture risk.  相似文献   

18.
Musculoskeletal injuries are often the consequences of wrong postural configurations used during Manual Materials Handling (MMH). This eventually leads to a large payout of worker’s compensation and loss of production time. A simulated study of back injury risks has been carried out on seven selected manufacturing industries to identify and evaluate harmful working postures. For each MMH task, Ovako Working Posture Analyzing System (OWAS) codes have been identified with the help of motion study pictures. Also, Chaffin's biomechanical model was used to calculate L5/S1 load compression values on the spine during MMH activities. The multilevel approach adopted was a combination of OWAS and Chaffin’s biomechanical model. The application of a digitizer enabled us to identify the coordinates and it made a subsequent evaluation of the angles of each body link possible.  相似文献   

19.
为解决煤与瓦斯突出事故数据集少,数据缺失严重的问题,提出将多重插补(MI)和随机森林填补(MF)应用于填补缺失参数,并将填补前和填补后的数据输入SVM,ELM,RF 3种机器学习算法进行训练,构建9种耦合模型。采用总体准确率、局部准确率、运行时间这3种指标评价模型性能。研究结果表明:采用数据填补算法后,由于训练样本增大,煤与瓦斯突出事故预测的总体准确率提高,运行时间增长;MF-RF模型的总体准确率与事故预测准确率最高,分别为97.90%和98.93%;RD-ELM模型的运行时间最短,为0.24 s;多重插补使得煤与瓦斯突出预测的总体准确率提高0.98%~1.11%,随机森林填补总体准确率提高5.13%~7.50%,随机森林填补的效果好于多重插补。  相似文献   

20.
Objective: The objective of this study was to discuss the influence of the pre-impact posture to the response of a finite element human body model (HBM) in frontal impacts.

Methods: This study uses previously published cadaveric tests (PMHS), which measured six realistic pre-impact postures. Seven postured models were created from the THUMS occupant model (v4.0): one matching the standard UMTRI driving posture as it was the target posture in the experiments, and six matching the measured pre-impact postures. The same measurements as those obtained during the cadaveric tests were calculated from the simulations, and biofidelity metrics based on signals correlation (CORA) were established to compare the response of the seven models to the experiments.

Results: The HBM responses showed good agreement with the PMHS responses for the reaction forces (CORA = 0.80 ± 0.05) and the kinematics of the lower part of the torso but only fair correlation was found with the head, the upper spine, rib strains (CORA= 0.50 ± 0.05) and chest deflections (CORA = 0.67 ± 0.08). All models sustained rib fractures, sternal fracture and clavicle fracture. The average number of rib fractures for all the models was 5.3 ± 1.0, lower than in the experiments (10.8 ± 9.0).

Variation in pre-impact posture greatly altered the time histories of the reaction forces, deflections and the rib strains, mainly in terms of time delay, but no definite improvement in HBM response or injury prediction was observed. By modifying only the posture of the HBM, the variability in the impact response was found to be equivalent to that observed in the experiments. The postured HBM sustained from 4 to 8 rib fractures, confirming that the pre-impact posture influenced the injury outcome predicted by the simulation.

Conclusions: This study tries to answer an important question: what is the effect of occupant posture on kinematics and kinetics. Significant differences in kinematics observed between HBM and PMHS suggesting more coupling between the pelvis and the spine for the models which makes the model response very sensitive to any variation in the spine posture. Consequently, the findings observed for the HBM cannot be extended to PMHS. Besides, pre-impact posture should be carefully quantified during experiments and the evaluation of HBM should take into account the variation in the predicted impact response due to the variation in the model posture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号