首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed.  相似文献   

2.
ABSTRACT: Six new techniques have been developed for lake watershed analysis and water resource management. The techniques are for determining: (1) watershed land use intensity with reference to water quality, (2) lake vulnerability, (3) water quality, (4) watershed carrying capacity, (5) the economic value of the lake, and (6) the potential of undeveloped lake-shore. These analyses are designed for use by rural planning commissions with guidance and assistance from state agencies and the state university. The comprehensive rural watershed land and water use plan developed by this procedure is inexpensive in time and money, understandable by the layman, and scientificially sound. It is based on presently available information. This water resource planning procedure has been demonstrated in several town planning projects. It is suggested that this method, or modification of it, could be adopted in all rural states by action by a few administrators and without any new enabling or appropriations legislation.  相似文献   

3.
ABSTRACT: Storm-runoff quantity and quality were studied in three watersheds located near St. Paul in Ramsey County, Minnesota, from April 15 through September 15 of 1984, 1985, and 1986 to qualitatively determine the effects of precipitation and selected land uses on storm runoff. In respect to precipitation effects, differences in stormrunoff quantity between years in an urban watershed that lacks wetlands appear to be related to the average storm size (amount of precipitation) during the study period of each year. In contrast, the differences in storm-runoff quantity from watersheds that contain wetlands appear to be related to total precipitation during study period of each year. In respect to land use, the differences in storm-runoff quantity appear to be related to the amounts of impervious and wetland area. The watershed that contains the largest amount of impervious area and smallest amount of wetland area has the largest amount of storm runoff. Differences in storm-runoff quality appear to be related to the amounts of wetland and lake area. The watershed that contains the largest amounts of wetland and lake area has the smallest storm-runoff loading of suspended solids, phosphorus, and nitrogen. The wetland and lake areas likely retain the loading and, subsequently, lower the amount of storm-runoff loading exported from a watershed.  相似文献   

4.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

5.
ABSTRACT: Water quality and nonpoint source (NPS) pollution are important issues in many areas of the world, including the Inner Bluegrass Region of Kentucky where urban development is changing formerly rural watersheds into urban and mixed use watersheds. In watersheds where land use is mixed, the relative contributions of NPS pollution from rural and urban land uses can be difficult to separate. To better understand NPS pollution sources in mixed use watersheds, surface water samples were taken at three sites that varied in land use to examine the effect of land use on water quality. Within the group of three watersheds, one was predominately agriculture (Agricultural), one was predominately urban (Urban), and a third had relatively equal representation of both types of land uses (Mixed). Nitrogen (N), phosphorus (P), total suspended solids (TSS), turbidity, pH, temperature, and streamflow were measured for one year. Comparisons are made among watersheds for concentration and fluxes of water quality parameters. Nitrate and orthophosphate concentrations were found to be significantly higher in the Agricultural watershed. Total suspended solids, turbidity, temperature, and pH, were found to be generally higher in the Urban and Mixed watersheds. No differences were found for streamflow (per unit area), total phosphorus, and ammonium concentrations among watersheds. Fluxes of orthophosphate were greater in the Agricultural watershed that in the Urban watershed while fluxes of TSS were greater in the Mixed watershed when compared to the Agricultural watershed. Fluxes of nitrate, ammonium, and total phosphorus did not vary among watersheds. It is apparent from the data that Agricultural land uses are generally a greater source of nutrients than the Urban land uses while Urban land uses are generally a greater source of suspended sediment.  相似文献   

6.
ABSTRACT. The Nation has entered a new era of water quality management in which land use policy and regulation must assume an increasingly important role. The benefits of tertiary and advanced waste treatment may be offset by contradictory land use and pollution from land runoff. Unless land use planning and controls are included in water quality management, land-imposed constraints on water quality can be anticipated. Pollution from major types of land runoff are reviewed with respect to sources, effects, and control procedures. Emphasis is given to land use practices and controls. The crucial issue with regard to the latter is lack of land use policies at federal, state, and local levels. State legislation establishing guidelines and minimum standards for land use regulation by local government is required. The dependency of water quality on land use points to the fallacy of attempting to provide for comprehensive water pollution control outside the context of comprehensive land-water resource planning and management.  相似文献   

7.
ABSTRACT: Human land use is a major source of change in catchments in developing areas. To better anticipate the long‐term effects of growth, land use planning requires estimates of how changes in land use will affect ecosystem processes and patterns across multiple scales of space and time. The complexity of biogeochemical and hydrologic interactions within a basin makes it difficult to scale up from process‐based studies of individual reaches to watershed scales over multiple decades. Empirical models relating land use/land cover (LULC) to water quality can be useful in long‐term planning, but require an understanding of the effects of scale on apparent land use‐water quality relationships. We empirically determined how apparent relationships between water quality and LULC data change at different scales, using LIJLC data from the Willapa Bay watershed (Washington) and water quality data collected along the Willapa and North Rivers. Spatial scales examined ranged from the local riparian scale to total upstream catchment. The strength of the correlations between LTJLC data and longitudinal water quality trends varied with scale. Different water quality parameters also varied in their response to changes in scale. Intermediate scales of land use data generally were better predictors than local riparian or total catchment scales. Additional data from the stream network did not increase the strength of relationships significantly. Because of the likelihood of scale‐induced artifacts, studies quantifying land use‐water quality relationships performed at single scales should be viewed with great caution.  相似文献   

8.
ABSTRACT: Private lakeshore development usually precedes establishment of public lake access. As a result, the best access areas are often occupied before public access is provided. The public then has a problem to provide access for nonriparian citizens. This problem can be anticipated and prevented by classifying undeveloped lakeshore areas according to suitability for both private and public uses, and incorporating appropriate recommendations into the municipal, comprehensive land use plan. To accomplish this, a site evaluation system has been developed which numerically rates the lakeshore for each of four public uses: public beaches, picnic areas, boat access areas, and public marinas; and two private uses: private marinas and vacation homes. Ratings are developed for: slope, soil suitability, shoreland type, water quality, site location, scenery, and road access. These ratings are combined with a statement of public goals developed from attitude surveys to produce a lakeshore land use plan. The plan recommends that lakeshore areas best suited for private development are so used, and areas best suited for public use are reserved for that purpose. This site evaluation system is demonstrated by a case study on Lake Champlain in Ferrisburg, Vermont.  相似文献   

9.
ABSTRACT: Agricultural and residential activities are key non-point sources of nitrogen pollution in urban-rural fringe areas. A GIS-based watershed approach was used to compare land use indicators (septic system and animal unit densities), to streamwater nitrate-N in the Salmon River near Vancouver, B.C., Canada. The density of septic systems was used as an indicator of residential development while animal unit density was used as an indicator of the intensity of agricultural activity. Nitrate-nitrogen (nitrate-N) concentrations as high as 7.1 mg·L?1 were found in the mid-portion of the watershed during the summer months, when streamflow is low and groundwater comprises a large proportion of water in the stream. The major aquifer supplying water to the midsection of the watershed is contaminated with nitrate-N. A comparison of the relationships between septic system and animal unit density and nitrate-N in the upstream to downstream direction provided evidence that both residential and agricultural activities contribute to elevated nitrate-N in the Salmon River mainstem. In contrast, only septic system density corresponded to the pattern of streamwater nitrate-N in Coghlan Creek, the main tributary to the Salmon River.  相似文献   

10.
Much research has been done to determine the benefit of a water resources development to society as a whole. Some research has explored the benefit of such a facility to a region. Very little research exists on the effects of a reservoir on the immediately surrounding area. The general hypothesis of this study is that the spatial patterns of land use change are influenced by economic characteristics of the reservoir and reservoir area. Several hypotheses concerning the effects of relative location on a peninsula are tested using analysis of variance. The data used for the analysis is based on Lake Cumberland, a reservoir in southern Kentucky. The analysis indicates that there exists significant patterns of land use change around the lake and on peninsulas.  相似文献   

11.
ABSTRACT: Land cover and land use change have long been known to influence the chemical, physical, and biological characteristics of streams. This study makes use of land cover maps derived from fine resolution satellite imagery and an extensive stream quality dataset to determine the relationship between small watershed health rankings and land cover composition and configuration. Landscape metrics were derived from digital impervious surface area (ISA), tree cover (percent), and agricultural crop maps within Montgomery County, Maryland. Watershed rankings were developed by state and county collaborators (MD‐DNR and MCDEP) using extensive biological and chemical measurements. In stepwise logistic regression models the factors accounting for the most variation in stream health ranking were the percent ISA, followed by the percent of tree cover. Riparian buffer zone tree cover was also a significant predictor. Of the metrics that considered the spatial configuration of the landscape, a contagion index and the percent of ISA in the flow path from the ISA to the stream were also found to be significant predictors of stream health. Despite limited ability to characterize landscape configuration or narrow riparian buffer zone vegetation with coarser resolution imagery (from Landsat), model results were not significantly different from those based on the use of fine‐resolution ISA information, suggesting that broader area applications of the approach are possible. The results indicate that management practices designed to improve stream water quality should focus on the amount of ISA and tree cover in both the watershed and within the buffer zone.  相似文献   

12.
ABSTRACT: Surface water in the Long Creek watershed, located in western Piedmont region of North Carolina, was monitored from 1993 to 2001. The 8,190 ha watershed has undergone considerable land use and management changes during this period. Land use surveys have documented a 60 percent decrease in cropland area and a more than 200 percent increase in areas being developed into new homes. In addition, more than 200 conservation practices have been applied to the cropland and other agricultural land that remains in production. The water quality of Long Creek was monitored by collecting grab samples at four sites along Long Creek and continuously monitoring discharge at one site. The monitoring has documented a 70 percent reduction in median total phosphorus (TP) concentrations, with little reductions in nitrate and total Kjel‐dahl nitrogen, or suspended sediment levels. Fecal coliform (FC) and streptococci (FS) levels declined significantly downstream as compared to upstream during the last four years of monitoring. This decrease was attributed to the implementation of waste management practices and livestock exclusion fencing on three dairy operations in the watershed. Annual rainfall and discharge increased steadily until peaking in the third year of the monitoring period and varied while generally decreasing during the last four years of the project. An array of observation, pollutant concentration, and hydrologic data provide considerable evidence to suggest that the implementation of BMPs in the watershed have significantly reduced phosphorus and bacteria levels in Long Creek.  相似文献   

13.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   

14.
ABSTRACT: Lake and watershed management strategies and recent environmental legislation dictate that nonpoht nutrient sources associated with storm water runoff must be assessed. Accordingly, a nutrient flu assessment for phosphorus and nitrogen is conducted through an extensive literature review of nutrient export studies. These studies are reevaluated. The nutrient export coefficients are screened according to sampling design criteria and compiled according to land use. The ecological mechanisms within each land use influencing the magnitude of nutrient flux are also discussed  相似文献   

15.
ABSTRACT: Benthic macroinvertebrate samples representing 151 taxa were collected in August 1995 to examine the linkage between land use, water quality, and aquatic biointegrity in seven tributaries of the Blackfoot River watershed, Montana. The tributaries represent silvicultural (timber harvesting), agricultural (irrigated alfalfa and hay and livestock grazing), and wilderness land uses. A 2.4 km (1.5 mile) reach of a recently restored tributary also was sampled for comparison with the other six sites. A geographic information system (GIS) was used to characterize the seven subwatersheds and estimate soil erosion, using the Modified Universal Soil Loss Equation, and sediment delivery. The wilderness stream had the highest aquatic biointegrity. Two agricultural streams had the largest estimated soil erosion and sediment delivery rates, the greatest habitat impairment from nonpoint source pollution, and the most impoverished macroinvertebrate communities. The silvicultural subwatersheds had greater rates of estimated soil erosion and sediment delivery and lower aquatic biointegrity than the wilderness reference site but evinced better conditions than the agricultural sites. A multiple-use (forestry, grazing, and wildlife management) watershed and the restored site ranked between the silvicultural and agricultural sites. This spectrum of land use and aquatic biointegrity illustrates both the challenges and opportunities that define watershed management.  相似文献   

16.
ABSTRACT: We analyzed data from riffle and snag habitats for 39 small cold water streams with different levels of watershed urbanization in Wisconsin and Minnesota to evaluate the influences of urban land use and instream habitat on macroinvertebrate communities. Multivariate analysis indicated that stream temperature and amount of urban land use in the watersheds were the most influential factors determining macroinvertebrate assemblages. The amount of watershed urbanization was nonlinearly and negatively correlated with percentages of Ephemeroptera‐Plecoptera‐Trichoptera (EPT) abundance, EPT taxa, filterers, and scrapers and positively correlated with Hilsenhoff biotic index. High quality macroinvertebrate index values were possible if effective imperviousness was less than 7 percent of the watershed area. Beyond this level of imperviousness, index values tended to be consistently poor. Land uses in the riparian area were equal or more influential relative to land use elsewhere in the watershed, although riparian area consisted of only a small portion of the entire watershed area. Our study implies that it is extremely important to restrict watershed impervious land use and protect stream riparian areas for reducing human degradation on stream quality in low level urbanizing watersheds. Stream temperature may be one of the major factors through which human activities degrade cold‐water streams, and management efforts that can maintain a natural thermal regime will help preserve stream quality.  相似文献   

17.
ABSTRACT: The Hallett Quarry gravel pit lakes are an active sand and gravel extraction operation located 0.4 km north of the City of Ames, Iowa. During periods of drought, these lakes serve as a supplemental water supply for Ames. A modified version of the Vollenweider input-output model was used to predict future water quality under various watershed land use, drainage, and lake configurations. The dominant factor controlling the future water quality of the lakes was found to be the nutrient input. It is recommended that a management plan to protect the future water quality should be oriented towards reducing the sources of phosphorus to the lakes.  相似文献   

18.
Johnson Sauk Trail Lake remains highly eutrophic, even though the watershed has long been returned to an undisturbed condition with permanent vegetative cover and with little or no land disturbance in the watershed. Internal regeneration of nutrients has been identified as the major source of nutrients to the lake. Lake destratification, selective harvesting and removal of weeds, and control of algal blooms using chelated copper sulfate application followed by potassium permanganate application have all been chosen as management techniques for improving water quality conditions in the lake. These in-lake techniques are considered not as palliative measures, but as necessary tools in enhancing the lake's water quality characteristics.  相似文献   

19.
ABSTRACT: The U.S. Geological Survey examined 25 agricultural streams in eastern Wisconsin the determine relations between fish, invertebrate, and algal metrics and multiple spatial scales of land cover, geologic setting, hydrologic, aquatic habitat, and water chemistry data. Spearman correlation and redundancy analyses were used to examine relations among biotic metrics and environmental characteristics. Riparian vegetation, geologic, and hydrologic conditions affected the response of biotic metrics to watershed agricultural land cover but the relations were aquatic assemblage dependent. It was difficult to separate the interrelated effects of geologic setting, watershed and buffer land cover, and base flow. Watershed and buffer land cover, geologic setting, reach riparian vegetation width, and stream size affected the fish IBI, invertebrate diversity, diatom IBI, and number of algal taxa; however, the invertebrate FBI, percentage of EPT, and the diatom pollution index were more influenced by nutrient concentrations and flow variability. Fish IBI scores seemed most sensitive to land cover in the entire stream network buffer, more so than watershed‐scale land cover and segment or reach riparian vegetation width. All but one stream with more than approximately 10 percent buffer agriculture had fish IBI scores of fair or poor. In general, the invertebrate and algal metrics used in this study were not as sensitive to land cover effects as fish metrics. Some of the reach‐scale characteristics, such as width/depth ratios, velocity, and bank stability, could be related to watershed influences of both land cover and geologic setting. The Wisconsin habitat index was related to watershed geologic setting, watershed and buffer land cover, riparian vegetation width, and base flow, and appeared to be a good indicator of stream quality Results from this study emphasize the value of using more than one or two biotic metrics to assess water quality and the importance of environmental characteristics at multiple scales.  相似文献   

20.
云南高原湖泊流域土地利用与水质变化异质性分析   总被引:1,自引:0,他引:1  
以云南省九大高原湖泊为例,通过面板数据方式分析对高原湖泊流域土地利用类型变化,通过库兹涅兹曲线相关内容对利用强度的分析以及与水质的动态变化情况,得到耕地、园地、湿地面积与湖泊含磷量存在一定负相关.林地、牧草地、建设用地面积与湖泊含磷量存在一定正相关.牧草地、耕地、园地、湿地面积与湖泊含氮量存在一定负相关,建设用地面积与湖泊含氮量存在一定正相关.园地和耕地面积与污染综合指数存在负相关,建设用地面积与污染综合指数存在负相关.分析指出,滇池、泸沽湖处于流域协调区间,阳宗海、抚仙湖、星云湖、程海处于流域冲突区间,洱海、异龙湖处于冲突区间向协调区间转型过程中.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号