首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
Method for predicting photocatalytic oxidation rates of organic compounds   总被引:1,自引:0,他引:1  
In designing a photocatalytic oxidation (PCO) system for a given air pollution source, destruction rates for volatile organic compounds (VOCs) are required. The objective of this research was to develop a systematic method of predicting PCO rate constants by correlating rate constants with physical-chemical characteristics of compounds. Accordingly, reaction rate constants were determined for destruction of volatile organics over a titanium dioxide (TiO2) catalyst in a continuous mixed-batch reactor. It was found that PCO rate constants for alkanes and alkenes vary linearly with gas-phase ionization potential (IP) and with gas-phase hydroxyl radical reaction rate constant. The correlations allow rates of destruction of compounds not tested in this research to be predicted based on physical-chemical characteristics.  相似文献   

2.
Using structure-reactivity relationships between reaction rate constants and ionlzatlon potentials for structural homologues, estimates are presented for the rate constants of the reactions of ozone, the hydroxyl radical, and the nitrate radical with forty toxic air contaminants for which no or little data are available. These rate constants are in turn used to estimate the atmospheric persistence of saturated allphatics, unsaturated allphatics, and aromatic toxic organics. The corresponding atmospheric half-lives for removal by chemical reactions range from a few hours for the most reactive toxics (chloroprene, hexachlorocyclo-pentadiene, cresols, nitrosamines, maleic anhydride) to several months for the least reactive compounds (nitrobenzene, methyl bromide, phosgene).  相似文献   

3.
We present a modeling study investigating the influence of climate conditions and solar radiation intensity on gas-phase trichloroacetic acid (TCA) formation. As part of the ECCA-project (Ecotoxicological Risk in the Caspian Catchment Area), this modeling study uses climate data specific for the two individual climate regimes, namely "Kalmykia" and "Kola Peninsula". A third regime has also been included in this study, namely "Central Europe", which serves as a reference to somehow more moderate climate conditions. The simulations have been performed with a box modeling package (SBOX, photoRACM), which uses Regional Atmospheric Chemistry Mechanism (RACM) as its chemistry scheme. For this model a mechanism supplement has been developed including the reaction pathways of methyl chloroform photooxidation. The investigations are completed by a detailed sensitivity study addressing the impact of temperature and relative humidity. Atmospheric OH and HO2 concentrations and the NOx/HO2 ratio were identified as the governing quantities controlling the TCA formation trough methyl chloroform oxidation in the gas phase. Model calculations show a TCA production rate ranging between almost zero and 6.5 x 10(3) molecules cm(-3) day(-1) depending on location and season. In the Kalmykia regime the model predicts mean TCA production rates of 1.3 x 10(-4) and 5.4 x 10(-5) microg m(-3) year(-1) for the urban and rural environment, respectively. From the comparison of model calculations with measured TCA burdens in the soil ranging between 130 g m(-3) and 1750 g m(-3) we conclude that TCA formation through methyl chloroform photooxidation in the gas-phase is probably not the principal atmospheric TCA source in this region.  相似文献   

4.
Alkoxy radicals are key intermediates in the atmospheric degradations of volatile organic compounds, and can typically undergo reaction with O2, unimolecular decomposition or unimolecular isomerization. Previous structure–reactivity relationships for the estimation of rate constants for these processes for alkoxy radicals [Atkinson, R., 1997. Atmospheric reactions of alkoxy and β-hydroxyalkoxy radicals. International Journal of Chemical Kinetics, 29, 99–111; Aschmann, S.M., Atkinson, R., 1999. Products of the gas-phase reactions of the OH radical with n-butyl methyl ether and 2-isopropoxyethanol: reactions of ROC(O)< radicals. International Journal of Chemical Kinetics, 31, 501–513] have been updated to incorporate recent kinetic data from absolute and relative rate studies. Temperature-dependent rate expressions are derived allowing rate constants for all three of these alkoxy radical reaction pathways to be calculated at atmospherically relevant temperatures.  相似文献   

5.
A gas-phase reaction mechanism for the atmospheric photooxidations of over 100 alkanes, alkenes, aromatic hydrocarbons, alcohols, ethers and other compounds representative of the range of reactive organics emitted into polluted atmospheres is described. Most of these organic species are represented using generalized reactions with variable rate constants and product yield coefficients for which individual assignments were made or estimated. This mechanism employs 19 species to represent the reactive oxygenated and organic nitrate products, and includes the gas-phase reactions of SO2, but does not include heterogeneous or liquid-phase reactions. The evaluation of this mechanism, by comparison of its predictions against the results of over 500 environmental chamber experiments, is described in a separate paper. This detailed mechanism can be used in assessments of relative atmospheric reactivities of organic compounds, and can provide the basis for the derivation of more condensed mechanisms for use in air quality simulation models.  相似文献   

6.
The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 microm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

7.
The effects of two gas-phase chemical kinetic mechanisms, Regional Atmospheric Chemistry Mechanism version 2 (RACM2) and Carbon-Bond 05 (CB05), and two secondary organic aerosol (SOA) modules, the Secondary Organic Aerosoi Model (SORGAM) and AER/EPRI/Caltech model (AEC), on fine (aerodynamic diameter < or =2.5 microm) particulate matter (PM2.5) formation is studied. The major sources of uncertainty in the chemistry of SOA formation are investigated. The use of all major SOA precursors and the treatment of SOA oligomerization are found to be the most important factors for SOA formation, leading to 66% and 60% more SOA, respectively. The explicit representation of high-NO, and low-NOx gas-phase chemical regimes is also important with increases in SOA of 30-120% depending on the approach used to implement the distinct SOA yields within the gas-phase chemical kinetic mechanism; further work is needed to develop gas-phase mechanisms that are fully compatible with SOA formation algorithms. The treatment of isoprene SOA as hydrophobic or hydrophilic leads to a significant difference, with more SOA being formed in the latter case. The activity coefficients may also be a major source of uncertainty, as they may differ significantly between atmospheric particles, which contain a myriad of SOA, primary organic aerosol (POA), and inorganic aerosol species, and particles formed in a smog chamber from a single precursor under dry conditions. Significant interactions exist between the uncertainties of the gas-phase chemistry and those of the SOA module.  相似文献   

8.
Cetin B  Odabasi M 《Chemosphere》2008,71(6):1067-1078
Atmospheric concentrations of 7 PBDE congeners (BDE-28, -47, -99, -100, -153, -154 and -209) were determined at four sites (i.e. Suburban, Urban 1, Urban 2, Industrial) in Izmir, Turkey and their gas/particle partitioning was investigated. Total PBDE ( summation operator(7)PBDE) concentrations ranged between 11 (Urban 1) and 149pgm(-3) (Industrial) in summer, while in winter, they ranged from 6 (Suburban) to 81pgm(-3) (Industrial). BDE-209 was the dominant congener at all sites, followed by BDE-99 and -47. Investigation of source profiles indicated that the air samples were dominated by congeners of the penta and deca-technical BDE mixtures. The measured PBDE particle fractions were compared to the predictions of the K(OA) (octanol-air partition coefficient)-based equilibrium partitioning model and to the dynamic uptake model developed by others for passive samplers, which was adapted to model gas-particle partitioning in this study. For BDE-28, good agreement was observed between the experimental particle fractions and those predicted by the equilibrium partitioning model. However, this model overestimated the particle fractions of other congeners. The predictions of the dynamic uptake model supported the hypothesis that the unexpectedly high partitioning of BDEs (except BDE-28) to the gas-phase is due to their departure from equilibrium partitioning. When congeners with very large octanol-air partition coefficients (i.e. BDE-100, -99, -154, -153, and -209) are emitted from their sources in the gas-phase, they may remain in that phase for several months before reaching equilibrium with atmospheric particles. This may also have important implications for the transport of atmospheric PBDEs. For example, in addition to particle-bound transport, the gas-phase transport of highly brominated congeners (i.e. BDE-209) may also be important.  相似文献   

9.
In 1974, Junge postulated a relationship between variability of concentrations of gases in air at remote locations and their atmospheric residence time, and this Junge relationship has subsequently been observed empirically for a range of trace gases. Here, we analyze two previously-published datasets of concentrations of cyclic volatile methyl siloxanes (cVMS) in air and find Junge relationships in both. The first dataset is a time series of concentrations of decamethylcyclopentasiloxane (D5) measured between January and June, 2009 at a rural site in southern Sweden that shows a Junge relationship in the temporal variability of the measurements. The second dataset consists of measurements of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and D5 made simultaneously at 12 sites in the Global Atmospheric Passive Sampling (GAPS) network that shows a Junge relationship in the spatial variability of the three cVMS congeners. We use the Junge relationship for the GAPS dataset to estimate atmospheric lifetimes of dodecamethylcyclohexasiloxane (D6), 8:2–fluorotelomer alcohol and trichlorinated biphenyls that are within a factor of 3 of estimates based on degradation rate constants for reaction with hydroxyl radical determined in laboratory studies.  相似文献   

10.
Atmospheric transport and deposition of polychlorinated biphenyls (PCBs) is an important problem for ecosystems around the world. Data from several monitoring networks demonstrate that atmospheric PCB concentrations are dramatically elevated in urban areas compared to rural or background regions, such that these urban emissions of PCBs support the regional and global transport and deposition of PCBs to more remote areas. Identifying and controlling the sources of urban atmospheric PCBs is thus essential in minimizing the regional and global transport and deposition of these compounds. From December 1999 to November 2000, gas-phase PCB concentrations were measured at two monitoring locations, 8 km apart, within the New York City metropolitan area, at Jersey City and Bayonne, NJ. Concentrations, congener patterns, and temporal patterns of PCBs differ dramatically at the two sites, suggesting that a significant source of atmospheric PCBs exists within 8 km of the Bayonne site, resulting in spikes in gas-phase PCB concentration at Bayonne that are not observed at Jersey City. The Regional Atmospheric Model System (RAMS) coupled with the Hybrid Particle and Concentration Transport model (HYPACT) was used to estimate that the PCB source near Bayonne emits a flux of ΣPCBs on the order of 100 g d−1. Extrapolation of this source magnitude to the area of New York City suggests that this urban area emits at least 300 kg yr−1 ΣPCBs to the regional atmosphere, similar in magnitude to the flow of ΣPCB out of the Upper Hudson River into the New York/New Jersey Harbor.  相似文献   

11.
Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet–visible (UV–vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C2–C8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.  相似文献   

12.
Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenanthrene vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 microm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, alpha = (1.4 +/- 0.4) x 10(-2) was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small alpha = (9.7 +/- 1.8) x 10(-5) was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.  相似文献   

13.
The aqueous ozonolysis of α-pinene and β-pinene was conducted under simulated tropospheric conditions at different pHs and temperatures. Three kinds of products, peroxides, carbonyl compounds, and organic acids, were well characterized, and the detection of these products provides effective evidence for understanding the atmospheric aqueous reaction pathway. We have two interesting findings: (1) the unexpected formation of methacrolein (MACR), with a yield of ~40%, in the α-pinene–O3 aqueous reaction indicates a potentially new SOA formation pathway, because MACR is one of the important precursors of SOA; and (2) the surprisingly high yields of H2O2, ~60% for the α-pinene–O3 reaction and ~100% for the β-pinene–O3 reaction, indicates that H2O2 can be a significant contributor to the origin and transformation of oxidants in the atmosphere, especially in the humid regions. Moreover, we have determined the rate constant for aqueous reaction between MACR and H2O2 in pH 2 to 7 and obtained its upper limit as 0.13 M L?1 s?1. A mechanism concerning the formation of the species mentioned above is proposed, and it differs from that in the gas-phase reaction. We suggest that water plays a key role in the mechanism, by participating in the reactions as a direct reactant and by removing the excess energy of intermediates formed in the reactions.  相似文献   

14.
We are happy and proud to announce that our book ‘Atmospheric Degradation of Organic Substances — Data for Persistence and Long-range Transport’ (see pp. 143–144) has recently been published by Wiley-VCH [1]. It contains a critical compilation of photo degradation rate constants and quantum efficiencies relevant for calculating the atmospheric persistence of volatile and a few semi-volatile organic compounds. In addition to the data of nearly 1100 substances, the importance of persistence in air and long-range transport potential is presented in two chapters from the point of view of chemicals legislation and of atmospheric photochemistry.  相似文献   

15.
Terrestrial carbon modelling shows that the Goudriaan and Ketner and Esser simulations fit historical data well, but the results are sensitive to the decomposition rate coefficient of old sediment carbon. Modification of this rate constant over time, weighted by emission increases or linear increases, changes the model results to fit historic ice core data. Very old sediment carbon decomposition has an effect on the model postdictions only when the rate constant is 10 times greater than that predicted from sediment studies. Future estimates show that a maximum change from agriculture to forest has a small effect on abating emission increases. Controlling emission rates at 5.1 x 10(15) g C/a will result in almost a 50% increase in atmospheric CO(2) in 200 years, and reducing emission rates to 1960 levels (approximately 2.5 x 10(15) g C/a) immediately will still result in an increase in atmospheric CO(2).  相似文献   

16.
Abstract

The mass transfer of naphthalene vapor to water droplets in air was studied in the presence of ozone (O3) in the gas phase. A falling droplet reactor with water droplets of diameters 55, 91, and 182 μm was used for the study. O3 reacted with naphthalene at the air-water interface, thereby decreasing the mass transfer resistance and increasing the rate of uptake of naphthalene into the droplet. A Langmuir-Hinshelwood reaction mechanism at the air-water interface satisfactorily described the surface reaction. The first-order surface reaction rate constant, ks, increased with decreasing droplet size. Three organic intermediates were identified in the aqueous phase as a result of ozonation of naphthalene at the surface of the droplet indicating both peroxidic and nonperoxidic routes for ozonation. The presence of an organic carbon surrogate (fulvic acid) increased both the partition constant of naphthalene and the surface reaction rate of O3. The heterogeneous oxidation of naphthalene by O3 on the droplet was 15 times faster than the homogeneous oxidation by O3 in the bulk air phase, whereas it was only 0.08 times the homogeneous gas-phase oxidation by hydroxyl radicals under atmospheric conditions.  相似文献   

17.
The atmospheric oxidation of mercury in the Mediterranean marine boundary layer (MBL) has been studied using the Atmospheric Mercury Chemistry over the Sea (AMCOTS) model. The model results have been compared to measured data obtained during an oceanographic research campaign in 2000, with more success than previous modelling attempts. In light of the often high concentrations of ozone present in the Mediterranean boundary layer, seasonal case studies using typical meteorological conditions and average ozone concentrations have been performed to identify the main oxidants of elemental mercury. The sensitivity of the modelled reactive gaseous mercury (RGM) concentrations to the Hg+O3 rate constant has been assessed using the two most recent rate determinations. The results using the higher of the two literature values gives results inconsistent with measured values of RGM when the reaction between Hg and O3 is assumed to give a gas phase product. This does not necessarily indicate that the rate constant is incorrect but possibly that other rate constants in the model are overestimated or indeed that there may be reduction reactions occurring in the atmosphere which have yet to be identified. Alternatively, when the reaction product of Hg and O3 is assumed to be a solid and therefore not contribute to RGM the modelled and measured results are comparable. The deposition rates calculated by the model when compared with calculated and measured sea surface emission fluxes available in the literature indicate that dry deposition flux of RGM is comparable to the sea surface emission flux. The calculated lifetime of Hg0 in the Mediterranean MBL is between one and two weeks.  相似文献   

18.
The gas-phase ozonolysis of (E)-β-farnesene was investigated in a 3.91 m3 atmospheric simulation chamber at 296 ± 2 K and relative humidity of around 0.1%. The relative rate method was used to determine the reaction rate coefficient of (4.01 ± 0.17) × 10?16 cm3 molecule?1 s?1, where the indicated errors are two least-squares standard deviations and do not include uncertainties in the rate coefficients for the reference compounds (γ-terpinene, cis-cyclooctene and 1,5-cyclooctadiene). Gas phase carbonyl products were collected using a denuder sampling technique and analyzed with GC/MS following derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA). The reaction products detected were acetone, 4-oxopentanal, methylglyoxal, 4-methylenehex-5-enal, 6-methylhept-5-en-2-one, and (E)-4-methyl-8-methylenedeca-4,9-dienal. A detailed mechanism for the gas-phase ozonolysis of (E)-β-farnesene is proposed, which accounts for all of the products observed in this study. The results of this work indicate that the atmospheric reaction of (E)-β-farnesene with ozone has a lifetime of around 1 h and is another possible source of the ubiquitous carbonyls, acetone, 4-oxopentanal and 6-methylhept-5-en-2-one in the atmosphere.  相似文献   

19.
对天津市11个采样点的空气颗粒物和土壤样品进行采样调查,采用气相色谱/质谱联用仪分析样品中15种酞酸酯类化合物(PAEs)的含量。结果表明,11个采样点空气颗粒物样品中总酞酸酯类化合物(TPAEs)以体积计质量浓度为90.87~1355.70ng/m3,以质量计质量浓度为783.84~8712.37mg/kg;土壤中TPAEs质量浓度为0.53~2.53mg/kg。邻苯二甲酸二丁酯(DBP)与邻苯二甲酸二(2-乙基己基)酯(DEHP)是空气颗粒物和土壤样品中的主要污染物。土壤与空气颗粒物中TPAEs和DBP存在相关关系,Pearson相关系数分别为0.825和0.864(双尾检验,显著性水平0.01),且空气颗粒物中各种PAEs浓度为土壤PAEs浓度的数百至数万倍,说明空气沉降可能是土壤PAEs污染的主要原因之一。  相似文献   

20.
Abstract

Uptake of aromatic hydrocarbon vapors (benzene and phenanthrene) by typical micrometer-sized fog-water droplets was studied using a falling droplet reactor at temperatures between 296 and 316 K. Uptake of phenan-threne vapor greater than that predicted by bulk (air-water)-phase equilibrium was observed for diameters less than 200 μm, and this was attributed to surface adsorption. The experimental values of the droplet-vapor partition constant were used to obtain the overall mass transfer coefficient and the mass accommodation coefficient for both benzene and phenanthrene. Mass transfer of phenanthrene was dependent only on gas-phase diffusion and mass accommodation at the interface. However, for benzene, the mass transfer was limited by liquid-phase diffusion and mass accommodation. A large value of the mass accommodation coefficient, α = (1.4 ± 0.4) × 10?2 was observed for the highly surface-active (hydrophobic) phenanthrene, whereas a small α = (9.7 ± 1.8) × 10?5 was observed for the less hydrophobic benzene. Critical cluster numbers ranging from 2 for benzene to 5.7 for phenanthrene were deduced using the critical cluster nucleation theory for mass accommodation. The enthalpy of mass accommodation was more negative for phenanthrene than it was for benzene. Consequently, the temperature effect was more pronounced for phenanthrene. A linear correlation was observed for the enthalpy of accommodation with the excess enthalpy of solution. A natural organic carbon surrogate (Suwannee Fulvic acid) in the water droplet increased the uptake for phenanthrene and benzene, the effect being more marked for phenanthrene. A characteristic time constant analysis showed that uptake and droplet scavenging would compete for the fog deposition of phenanthrene, whereas deposition would be unimpeded by the uptake rate for benzene vapor. For both compounds, the characteristic atmospheric reaction times were much larger and would not impact fog deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号