首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

2.
Oxidation of bisphenol F (BPF) by manganese dioxide   总被引:1,自引:0,他引:1  
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42− > Cl > NO3 ≈ SO42−, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.  相似文献   

3.
Globally carbon nanoparticles are increasingly utilized, yet it is not known if these nanoparticles pose a threat to the environment or human health. This investigation examined ‘as-prepared’, and acid cleaned carbon nanoparticle physicochemical characteristics (by FTIR, TEM, FESEM, UV-VIS and X-ray microanalysis), and whether these characteristics changed following 2.5-7 yr exposure to pH neutral saline or fresh water. To determine if these aqueous aged nanotubes were cytotoxic, these nanotubes were incubated with human epithelial monolayers and analyzed for cell viability (vital staining) and ultrastructural nanoparticle binding/localization (TEM, FESEM). The presence of Ni and Y catalyst, was less damaging to cells than CNT lattice surface oxidation. Extended fresh water storage of oxidized CNTs did not reduce surface reactive groups, nor lessen cell membrane destruction or cell death. However storing oxidized CNTs in saline or NOM significantly reduced CNT-induced cell membrane damage and increased cell survival to control levels.  相似文献   

4.
In this paper, we present the effect of inorganic cations such as Na+, K+, Ca2+, Mg2+ on the salting-out phenomenon of metalaxyl from pure water to aqueous salt solutions. Moreover the 1-octanol/water partition coefficient in pure water is presented. To accomplish this, aqueous solubility of metalaxyl was determined in pure water, in different salt solution (NaCl, KCl, CaCl2 and MgCl2), and at different concentration level ranging from 0.01 to 1.5 M. The 1-octanol/water partition coefficient was determined using the static shake-flask method. Solubility was determined using dynamic saturation method for pure water in the range of 298.15-325.15 K and at 298.15 K for different salt solutions. The solubility value in pure water for studied interval was found constant (= 3.118 × 10−2 mol kg−1).Solubility values were used to calculate the standard molar Gibbs free energy of dissolution (ΔsolG°) and transfer (ΔtrG°) at 298.15 K. The values of ΔtrG° from pure to all studied aqueous salt solutions did not exceed 2 kJ mol−1, the value of ΔsolG° of dissolution is 18.5 ±0.72 kJ mol−1. The 1-octanol/water partition coefficient in pure water log Ko/w is equal to 1.69. The obtained results confirm the classification of the neutral metalaxyl as a slightly hydrophobic molecule.  相似文献   

5.
This study investigated the effect of cation type, ionic strength, and pH on the performance of an anionic monorhamnolipid biosurfactant for solubilization and removal of residual hexadecane from sand. Three common soil cations, Na+, Mg2+, and Ca2+, were used in these experiments and hexadecane was chosen to represent a nonaqueous phase liquid (NAPL) less dense than water. Results showed that hexadecane solubility in rhamnolipid solution was significantly increased by the addition of Na+ and Mg2+. Addition of up to 0.2 mM Ca2+ also increased hexadecane solubility. For Ca2+ concentrations greater than 0.2 mM there was little effect on hexadecane solubility due to competing effects of calcium-induced rhamnolipid precipitation and enhanced hexadecane solubilization. Efficiency of NAPL solubilization can be expressed in terms of molar solubilization ratios (MSR). The results showed that MSR values for hexadecane in rhamnolipid solutions increased 7.5-fold in the presence of 500 mM Na+, and 25-fold in the presence of 1 mM Mg2+. The presence of cations also reduced the interfacial tension between rhamnolipid solutions and hexadecane. For example, an increase in Na+ from 0 to 800 mM caused a decrease in interfacial tension from 2.2 to 0.89 dyn cm−1. Similarly, decreasing pH caused a reduction in interfacial tension. The lowest interfacial tension value observed in this study was 0.02 dyn cm−1 at pH 6 in the presence of 320 mM Na+. These conditions were also found to be optimal for removal of hexadecane residual from sand columns, with 58% of residual removed within three pore volumes. The removal of residual NAPL from the packed columns was primarily by mobilization, even though solubilization was significantly increased in the presence of Na+.  相似文献   

6.
A battery of biomarkers has recently been developed in the earthworm Eisenia andrei. In this study, different biomarkers (i.e. Ca2+-ATPase activity, lysosomal membrane stability-LMS, lysosomal lipofuscin and neutral lipid content) were utilized to evaluate the alterations in the physiological status of animals, induced by exposure for 3 d to different sublethal concentrations of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (1.5 × 10−3, 1.5 × 10−2, 1.5 × 10−1 ng mL−1) utilizing the paper contact toxicity test. Lysosome/cytoplasm volume ratio and DNA damage were also evaluated as a biomarker at the tissue level and as a biomarker of genotoxicity, respectively. Moreover, the NR retention time assay conditions were optimized for the determination of in vivo LMS in earthworm coelomocytes. The results demonstrate that LMS and Ca2+-ATPase activity were early warning biomarkers able to detect the effects of minimal amounts of TCDD and that biomarkers evaluated at the tissue level are important for following the evolution of the stress syndrome in earthworms. To evaluate the health status of the animals, an Earthworm Expert System (EES) for biomarker data integration and interpretation was developed. The EES proved to be a suitable tool able to rank, objectively, the different levels of the stress syndrome in E. andrei induced by the different concentrations of TCDD.  相似文献   

7.
Despite the enormous cost of radiation decontamination, there has been almost no quantitative discussion on how much it would reduce the long-term external radiation exposure in the Evacuation Zone and Planned Evacuation Zone (restricted zone) in Fukushima. The aim of this study is to assess the effectiveness of decontamination and return options and to identify important parameters for estimating the long-term cumulated effective dose (CED) during 15, 30 and 70 year period using data on land-use, population and decontamination in the restricted zone (about 1100 km2) in Fukushima.  相似文献   

8.
1,2-Dichloroethane (1,2-DCA) is one of the most hazardous pollutant of soil and groundwater, and is produced in excess of 5.44 × 109 kg annually. Owing to their toxicity, persistence and potential for bioaccumulation, there is a growing interest in technologies for their removal. Heavy metals are known to be toxic to soil microorganisms at high concentrations and can hinder the biodegradation of organic contaminants. In this study, the inhibitory effect of heavy metals, namely; arsenic, cadmium, mercury and lead, on the aerobic biodegradation of 1,2-DCA by autochthonous microorganisms was evaluated in soil microcosm setting. The presence of heavy metals was observed to have a negative impact on the biodegradation of 1,2-DCA in both soil samples tested, with the toxic effect being more pronounced in loam soil, than in clay soil. Generally, 75 ppm As3+, 840 ppm Hg2+, and 420 ppm Pb2+ resulted in 34.24%, 40.64%, and 45.94% increase in the half live (t½) of 1,2-DCA, respectively, in loam soil, while concentrations above 127.5 ppm Cd2+, 840 ppm Hg2+ and 420 ppm of Pb2+ and less than 75 ppm As3+ was required to cause a >10% increase in the t½ of 1,2-DCA in clay soil. A dose-dependent relationship between degradation rate constant (k1) of 1,2-DCA and metal ion concentrations was observed for all the heavy metals tested, except for Hg2+. This study demonstrated that different heavy metals have different impacts on the degree of 1,2-DCA degradation. Results also suggest that the degree of inhibition is metal specific and is also dependent on several factors including; soil type, pH, moisture content and available nutrients.  相似文献   

9.
Degaffe FS  Turner A 《Chemosphere》2011,85(5):738-743
Tire wear particles (TWP) abraded from end-of-life passenger car tires have been added at a concentration of 1 g L−1 to river water, sea water and mixtures thereof in order to examine the chemical controls on the leaching of Zn from the rubber matrix. Results of time-dependent experiments conducted over a period of 5 days were consistent with a diffusion controlled leaching mechanism with rate constants of about 0.04 mg L−1 h−1/2 in river water and between about 0.02 and 0.03 mg L−1 h−1/2 in sea water. Additional experiments revealed a reduction in Zn dissolution with both increasing salinity and pH and enhancement of leaching in the presence of fluorescent light compared with dark conditions. In corresponding experiments conducted in the presence of a fixed quantity (0.8 g L−1) of clean, fractionated estuarine sediment, aqueous Zn concentrations were reduced by at least an order of magnitude. Increasing the quantity of sediment resulted in a progressive reduction in Zn concentration until an apparent equilibrium was achieved, with partition coefficients defining the sediment-water distribution of Zn of about 550 mL g−1 and 270 mL g−1 in river water and sea water, respectively. Results are interpreted in terms of the dissolution of ZnO and other residual complexes from the matrix and the subsequent, rapid adsorption of Zn2+ ions to coexistent estuarine sediment. The findings of the study are discussed in terms of their implications for the transport, fate and effects of TWP Zn in aquatic environments that are likely to receive urban runoff.  相似文献   

10.
The utilization of sustainable and biodegradable lignocellulosic fiber to detoxify the noxious Cr(VI) from wastewater is considered a versatile approach to clean up a contaminated aquatic environment. The aim of the present research is to assess the proficiency and mechanism of biosorption on Ficus carica bast fiber via isotherm models (Langmuir, Freundlich, Temkin, Harkin’s–Jura, and Dubinin–Radushkevich), kinetic models, and thermodynamic parameters. The biomass extracted from fig plant was characterized by scanning electron microscopy and Fourier-transform infrared spectroscopy. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and contact time were studied by batch method. The equilibrium data were best represented by the Langmuir isotherm model, and the maximum adsorption capacity of Cr(VI) onto biosorbent was found to be 19.68 mg/g. The pseudo-second-order kinetic model adequately described the kinetic data. The calculated values of thermodynamic parameters such as enthalpy change (?H 0), entropy change (?S 0), and free energy change (?G 0) were 21.55 kJ/mol, 76.24 J/mol?K, and ?1.55 kJ/mol, respectively, at 30 °C which accounted for spontaneous and endothermic processes. The study of adsorbent capacity for Cr(VI) removal in the presence of Na+, Mg2+, Ca2+, SO 4 2? , HCO 3 ? and Cl? illustrated that the removal of Cr(VI) increased in the presence of HCO3? ions; the presence of Na+, SO 4 2? or Cl? showed no significant influence on Cr(VI) adsorption, while Ca2+ and Mg2+ ions led to an insignificant decrease in Cr(VI) adsorption. Further, the desorption studies illustrated that 31.10 % of metal ions can be removed from an aqueous system, out of which 26.63 % of metal ions can be recovered by desorption in first cycle and the adsorbent can be reused. The results of the scale-up study show that the ecofriendly detoxification of Cr(VI) from aqueous systems was technologically feasible.  相似文献   

11.

A number of methods have been reported for determining hydrophobic organic compound adsorption to dispersed carbon nanotubes (CNTs), but their accuracy and reliability remain uncertain. We have evaluated three methods to investigate the adsorption of phenanthrene (a model polycyclic aromatic hydrocarbon, PAH) to CNTs with different physicochemical properties: dialysis tube (DT) protected negligible depletion solid phase microextraction (DT-nd-SPME), ultracentrifugation, and filtration using various types of filters. Dispersed CNTs adhered to the unprotected polydimethylsiloxane (PDMS)-coated fibers used in nd-SPME. Protection of the fibers from CNT adherence was investigated with hydrophilic DT, but high PAH sorption to the DT was observed. The efficiency of ultracentrifugation and filtration to separate CNTs from the water phase depended on CNT physicochemical properties. While non-functionalized CNTs were efficiently separated from the water phase using ultracentrifugation, incomplete separation of carboxyl functionalized CNTs was observed. Filtration efficiency varied with different filter types (composition and pore size), and non-functionalized CNTs were more easily separated from the water phase than functionalized CNTs. Sorption of phenanthrene was high (< 70%) for three of the filters tested, making them unsuitable for the assessment of phenanthrene adsorption to CNTs. Filtration using a hydrophilic polytetrafluoroethylene (PTFE) filter membrane (0.1 μm) was found to be a simple and precise technique for the determination of phenanthrene adsorption to a range of CNTs, efficiently separating all types of CNTs and exhibiting a good and highly reproducible recovery of phenanthrene (82%) over the concentration range tested (70–735 μg/L).

  相似文献   

12.
Liu H  Yang J  Shi Y  Li Y  He S  Yang C  Yao H 《Chemosphere》2012,88(2):235-239
Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton’s reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH = 5, Fe2+ = 40 mg g−1 (dry solids), H2O2 = 32 mg g−1, OPC = 300 mg g−1 and lime = 400 mg g−1, in which the specific resistance to filtration reduction efficiency of 95% was achieved.  相似文献   

13.
Huang YT  Hseu ZY  Hsi HC 《Chemosphere》2011,84(9):1244-1249
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature >400 °C successfully lowered the Hg content to <20 mg kg−1. The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550 °C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction.  相似文献   

14.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

15.
Quantification of natural and engineered carbon nanotubes (CNT) in the environment is urgently needed to study their occurrence and fate and to enable a proper risk assessment. Currently, such methods are lacking. Here, we tested the resistance of 15 structurally different CNTs to chemothermal oxidation at 375 °C (CTO-375), a method used to isolate soots from environmental samples. Depending on their structure, CNTs survived CTO-375 in proportions ranging from 26 to 93%. Standard addition of CNTs to soil and sediment yielded recoveries between 66 and 171%, demonstrating the capability of CTO-375 to isolate CNTs from complex environmental matrices. These data of pure and added CNTs correspond to recoveries obtained with “ordinary” soots under similar experimental conditions. Hence, soot fractions commonly isolated with CTO-375 from environmental matrices most probably encompass CNTs. Future work should attempt to enhance the method's selectivity, i.e., its capability to separate CNTs from other forms of soot.  相似文献   

16.
Sulfamethoxazole (SMX) and sulfapyridine (SPY), two representative sulfonamide antibiotics, have gained increasing attention because of the ecological risks these substances pose to plants, animals, and humans. This work systematically investigated the removal of SMX and SPY by carbon nanotubes (CNTs) in fixed-bed columns under a broad range of conditions including: CNT incorporation method, solution pH, bed depth, adsorbent dosage, adsorbate initial concentration, and flow rate. Fixed-bed experiments showed that pH is a key factor that affects the adsorption capacity of antibiotics to CNTs. The Bed Depth Service Time model describes well the relationship between service time and bed depth and can be used to design appropriate column parameters. During fixed-bed regeneration, small amounts of SMX (3%) and SPY (9%) were irreversibly bonded to the CNT/sand porous media, thus reducing the column capacity for subsequent reuse from 67.9 to 50.4 mg g?1 for SMX and from 91.9 to 72.9 mg g?1 for SPY. The reduced column capacity resulted from the decrease in available adsorption sites and resulting repulsion (i.e., blocking) of incoming antibiotics from those previously adsorbed. Findings from this study demonstrate that fixed-bed columns packed with CNTs can be efficiently used and regenerated to remove antibiotics from water.  相似文献   

17.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

18.
Linlin W  Xuan Z  Meng Z 《Chemosphere》2011,83(5):693-699
In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O3/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5 ± 1.1 to 0.7 ± 0.3 mg L−1 and from 267 ± 24 to 52 ± 6 μg L−1, respectively. The very low DOC concentration of 0.6 ± 0.2 mg L−1 and THMFP of 44 ± 4 μg L−1 can be reached after the aquifer treatment.  相似文献   

19.
Acid Mine Drainages (AMDs) from Hane? and Valea Vinului (Romania) closed mines were considered for characterization and treatment using a local zeolitic volcanic tuff, ZVT, (M?cica?, Cluj County, Romania). Water samples were collected from two locations, before and after discharging point in case of Hane? mine, and on three horizons in case of Valea Vinului mine. Physico-chemical (pH, total solid, heavy metal ions concentration) analyses showed that the environment is strongly affected by these AMD discharges even if the mines were closed years ago. Iron, manganese and zinc were the main pollutants identified in Hane? mine AMD, while zinc is the one mainly present in case of Valea Vinului AMD. A batch technique (no stirring) in which the ZVT was put in contact with the AMD sample was proposed as a passive remediation technique. ZVT successfully remove heavy metal ion from AMD. According to heavy metal ion concentrations, removal efficiencies are reaching 100%, varying as follows, Fe2+ > Zn2+ > Mn2+. When the ZVT was compared with two cationic resins (strong, SAR and weak acid, WAR) the following series was depicted, SAR > ZVT > WAR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号