首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The objectives of this study were to quantitatively estimate the distribution of arsenic with its speciation and to identify potential pathways for transformation of arsenic species from samples of water, sediments, and plants in the ecosystem affected by the Cheongog Spring, where As(V) concentration reached levels up to 0.270 mg L−1. After flowing about 100 m downstream, the arsenic level showed a marked reduction to 0.044 mg L−1 (about 84% removal) without noticeable changes in major water chemistry. The field study and laboratory hydroponic experiments with the dominant emergent plants along the creek (water dropwort and thunbergian smartweed) indicated that arsenic distribution, reduction, and speciation appear to be controlled by, (i) sorption onto stream sediments in exchangeable fractions, (ii) bioaccumulation by and possible release from emergent plants, and (iii) transformation of As(V) to As(III) and organic species through biological activities.  相似文献   

2.
An arsenic speciation study has been performed in PM10 samples collected on a fortnight basis in the city of Huelva (SW Spain) during 2001 and 2002. The arsenic species were extracted from the PM10 filters using a NH2OH x HCl solution and sonication, and determined by HPLC-HG-AFS. The mean bulk As concentration of the samples analyzed during 2001 and 2002 slightly exceed the mean annual 6 ng m(-3) target value proposed by the European Commission for 2013, arsenate [As(V)] being responsible for the high level of arsenic. The speciation analyses showed that As(V) was the main arsenic species found, followed by arsenite [As(III)] (mean 6.5 and 7.8 ng m(-3) for As(V), mean 1.2 and 2.1 ng m(-3) for As(III), in 2001 and 2002, respectively). The high levels of arsenic species found in PM10 in Huelva have a predominant industrial origin, such as the one from a nearby copper smelter, and do not present a seasonal pattern. The highest daily levels of arsenic species correspond to synoptic conditions in which the winds with S and SW components transport the contaminants from the main emission source. The frequent African dust outbreaks over Huelva may result in an increment of mass levels of PM10, but do not represent a significant input of arsenic in comparison to the anthropogenic source. The rural background levels of arsenic around Huelva are rather high, in comparison to other rural or urban areas in Spain, showing a relatively high atmosphere residence time of arsenic. This work shows the importance of arsenic speciation in studies of aerosol chemistry, due to the presence of arsenic species [As(III) and As(V)] with distinct toxicity.  相似文献   

3.
A method using Ion Chromatography hyphenated to an Inductively Coupled Plasma-Mass Spectrometer has been developed to accurately determine arsenite (As(III)), arsenate (As(V)), mono-methylarsonic acid (MMAA(V)), dimethylarsinic acid (DMAA(V)) and arsenobetaine (AsBet) in different water matrices. The developed method showed a high sensitivity with detection limits for each arsenic species close to 0.4pg injected. Arsenite and arsenate were the major species found in surface and well waters, but AsBet and DMAA(V) were found in some surface waters, which has never been reported before, while in some natural mineral waters located in volcanic region, the arsenic content exceeded the maximal admissible arsenic content by European legislation standards and the predominant form was As(V).  相似文献   

4.
BACKGROUND: Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. METHODS: Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L(-1) suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. RESULTS: Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. DISCUSSION: Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. CONCLUSIONS: In general, As(V) and organic As were the dominant species in solution, which is surprising under anaerobic conditions in terrestrial environments. The unexpected occurrence of organic species of As was attributed to enrollment of ternary organic complexes or living organisms such as algae or cyanobacteria. PERSPECTIVES: These findings are believed to be useful for remediation strategies in mine-affected regions, as the organic As species are in general considered to be less toxic than inorganic ones and even As(V) is considered less mobile and toxic than As(III).  相似文献   

5.
We studied the bacterial diversity at a single location (the Terrubias mine; Salamanca province, Spain) with a gradient of soil As contamination to test if increasing levels of As would (1) change the preponderant groups of arsenic-resistant bacteria and (2) increase the tolerance thresholds to arsenite [As(III)] and arsenate [As(V)] of such bacteria. We studied the genetic and taxonomic diversity of culturable arsenic-resistant bacteria by PCR fingerprinting techniques and 16S rRNA gene sequencing. Then, the tolerance thresholds to As(III) and As(V) were determined for representative strains and mathematically analyzed to determine relationships between tolerances to As(III) and As(V), as well as these tolerances with the soil contamination level. The diversity of the bacterial community was, as expected, inversely related to the soil As content. The overall preponderant arsenic-resistant bacteria were Firmicutes (mainly Bacillus spp.) followed by γ-Proteobacteria (mainly Pseudomonas spp.), with increasing relative frequencies of the former as the soil arsenic concentration increased. Moreover, a strain of the species Rahnella aquatilis-Proteobacteria class) exhibited strong endurance to arsenic, being described for the first time in literature such a phenotype within this bacterial species. Tolerances of the isolates to As(III) and As(V) were correlated but not with their origin (soil contamination level). Most of the strains (64%) showed relatively low tolerances to As(III) and As(V), but the second most numerous group of isolates (19%) showed increased tolerance to As(III) rather than to As(V), even though the As(V) anion is the prevalent arsenic species in soil solution at this location. To our knowledge, this is the first study to report a shift towards preponderance of Gram-positive bacteria (Firmicutes) related to high concentrations of soil arsenic. It was also shown that, under aerobic conditions, strains with relatively enhanced tolerance to As(III) predominated over the most As(V)-tolerant ones.  相似文献   

6.
Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind "tightly" to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil.  相似文献   

7.
Arsenic represents a threat to all living organisms due to its toxicity which depends on its speciation. This element is carcinogenic, teratogenic and is certainly one of the most important contaminants affecting millions of people around the world. Abiotic and biotic processes control its speciation and distribution in the environment. We have previously shown that a new bacterial strain named ULPAs1 performed oxidation of As(III) (1.33 mM) to As(V) in batch cultures. In order to develop new methods to remove arsenic from contaminated effluents or waste, by bacterial oxidation of As(III) to As(V) followed by its sorption, the conservation of oxidative properties of ULPAs1 was investigated when cultivated in batch reactors in the presence of two solid phases, chabazite and kutnahorite, already used as microorganisms immobilizing materials in biological remediation processes. In parallel, the retention efficiency of these solid phases toward arsenic ions and particularly arsenate was studied. Pure quartz sand was used as a reference material. Kutnahorite efficiently sorbed As(V), chabazite alone performed As(III) oxidation and pure quartz sand did not sorb arsenic at all. The arsenite oxidative properties of ULPAs1 were conserved when cultivated in the presence of quartz or chabazite.  相似文献   

8.
Ali I  Aboul-Enein HY 《Chemosphere》2002,48(3):275-278
The speciation of arsenic [As(III) and As(V)] and chromium [Cr(III) and Cr(VI)] was carried out by high performance liquid chromatography. The column used was Econosil C18 (250 x 4.6 mm i.d., particle size 10 microm). The mobile phases consisted of water-acetonitrile (80:20, v/v) for arsenic and 10 mM ammonium acetate buffer (6.0 pH)-acetonitrile (10:90, v/v) for chromium speciation separately and respectively. The detection was carried out by UV-Vis at 410 nm and atomic absorption spectrometer (AAS) respectively and separately. The values of alpha and Rs of As(III) and As(V) species were 1.4 and 1.5 respectively while the values of alpha and Rs for Cr(III) and Cr(VI) were 1.35 and 0.2 respectively. The effect of the acetonitrile percentages was also carried out on the speciation of arsenic only. The relative standard deviation and limit of detection were in the range of 0.01-0.02 and 0.4-1.0 microg/ml respectively.  相似文献   

9.
Twenty four hours diel cycles of arsenic speciation in Acid Mine Drainage (AMD) due to photooxidation have been reported for the first time. AMD samples were taken during 48 h (31st March and 1st April, 2005) at 6 h intervals from the effluent of a massive abandoned polymetallic sulphide mine of the Iberian Pyrite Belt (Sw Spain). Samples were preserved in situ using cationic exchange prior to analysis by coupled high performance liquid chromatography, hydride generation and atomic fluorescence spectrometry (HPLC-HG-AFS) for arsenic speciation. The results indicated the presence of inorganic arsenic species with daily means of 262mugl(-1) for As(V) and 107 microg l(-1) for As(III). No marked diel trend was observed for As(V). However, a marked diel trend was observed for As(III) in the two studied days, with maximum concentrations during nighttime (141-143 microg l(-1)) and minimum concentrations at daytime (72-77 microg l(-1)). This difference in concentration during daytime and nighttime is ca. 100%. A similar diel cycle was observed for iron. An explanation for the arsenic diel cycles observed is the light induced photooxidation of As(III) and the elimination of As(V) due to its adsorption onto Fe precipitates during the daytime. Furthermore, the diel changes in arsenic speciation emphasize the importance of designing suitable sampling strategies in AMD systems.  相似文献   

10.
The determination of arsenic compounds in algae collected on the Catalan coast (Western Mediterranean) is reported. Ten algae species and the seagrass Posidonia oceanica were analyzed. Total arsenic in the samples was determined by microwave digestion and inductively coupled plasma mass spectrometry (ICPMS). Arsenic speciation in water extracts of samples was analyzed by liquid chromatography with both anionic and cationic exchange with ICPMS detection (LC-ICPMS). The total arsenic content of the algae samples ranged from 2.96 to 39.0mg As kg(-1). The following compounds were detected: arsenite (As(III)), arsenate (As(V)), methylarsonate (MA), dimethylarsinate (DMA), sulfonate sugar (SO3-sug), sulfate sugar (SO4-sug), phosphate sugar (PO4-sug), arsenobetaine (AB), arsenocholine (AC), trimethylarsine oxide (TMAO) and glycerol sugar (Gly-sug). The main arsenic species found were arsenosugars. Significant percentages of arsenobetaine (0.54 mg As kg(-1), 28% of the extractable arsenic and 0.39 mg As kg(-1), 18% of the extractable arsenic) were found in Ulva rigida and Enteromorpha compressa. These results are discussed in relation to the presence of epiphytes.  相似文献   

11.
The fractionation and speciation of As in a contaminated soil were investigated, and a remediation strategy was tested. Regarding speciation, we found that As(V) prevails over As(III) whereas more than 40% of total arsenic is in organic form. The fractionation of As was investigated with two sequential extraction methods: a low mobility was found. Then we tested the possibility of using phosphoric acid to extract As from the soil and cleaning the washing effluents by sorption onto montmorillonite. The efficiency of the extraction and of the adsorption onto the clay were also investigated for Cr, Cu, Fe, Mn, Ni, Pb and Zn, whose total concentrations and fractionation in the soil are reported here. The extraction percentages for As and metals ranged from 30 to 65%; the residual proportions in the soil are presumably in very unreactive forms. Montmorillonite showed a good uptake capacity towards the investigated pollutants.  相似文献   

12.
A simple HG-AAS technique has been evaluated and standardised for rapid speciation of As(III) and As(V) in a number of contaminated groundwater samples of West Bengal, India. Citric acid has been used for selective hydride formation of As(III). The sensitivity of the evaluated HG-AAS method is 7.91 mg(-1)l, standard deviation, 0.001 and detection limit, 0.4 microg l(-1). As(III) sensitivity remains constant in the sample pH range of 2.3-10.6. Concomitant mineral matrix of the water samples did not interfere with arsenic determination. Eight out of ten groundwater samples analysed for As(IlI)and As(V) contain more As(III), which lies in the range of 54-350 ppb. As(III) estimation in drinking water along with total arsenic should be invoked as a policy for a realistic risk assessment of the contaminated water.  相似文献   

13.
Arsenic speciation is important not only for understanding the mechanisms of arsenic accumulation and detoxification by hyperaccumulators, but also for designing disposal options of arsenic-rich biomass. The primary objective of this research was to understand the speciation and leachability of arsenic in the fronds of Chinese brake (Pteris vittata L.), an arsenic hyperaccumulator, with an emphasis on the implications for arsenic-rich biomass disposal. Chinese brake was grown for 18 weeks in a soil spiked with 50 mg As kg(-1) as arsenate (AsO4(3-)), arsenite (AsO3(3-)), dimethylarsinic acid (DMA), or methylarsonic acid (MMA). Plant samples were extracted with methanol/water (1:1) and arsenic speciation was performed using high performance liquid chromatography coupled with atomic fluorescence spectrometry. The impacts of air-drying on arsenic species and leachability in the fronds were examined in the laboratory. After 18 weeks, water-soluble arsenic in soil was mainly present as arsenate with little detectable organic species or arsenite regardless of arsenic species added to the soil. However, arsenic in the fronds was primarily present as inorganic arsenite with an average of 94%. Arsenite re-oxidation occurred in the old fronds and the excised dried tissues. Arsenic species in the fronds were slightly influenced by arsenic forms added to the soil. Air-drying of the fronds resulted in leaching of substantial amounts of arsenic. These findings can be of significance when looking at disposal options of arsenic-rich biomass from the point of view of secondary contamination.  相似文献   

14.
Acid washing and stabilization of an artificial arsenic-contaminated soil.   总被引:16,自引:0,他引:16  
An acid-washing process was studied on a laboratory scale to extract the bulk of arsenic(V) from a highly contaminated Kuroboku soil (Andosol) so as to minimize the risk of arsenic to human health and the environment. The sorption and desorption behavior of arsenic in the soil suggested the possibility of arsenic leaching under acidic conditions. Artificially contaminated Kuroboku soil (2830 mg As/kg soil) was washed with different concentrations of hydrogen fluoride, phosphoric acid, sulfuric acid, hydrogen chloride, nitric acid, perchloric acid, hydrogen bromide, acetic acid, hydrogen peroxide, 3:1 hydrogen chloride-nitric acid, or 2:1 nitric acid-perchloric acid. Phosphoric acid proved to be most promising as an extractant, attaining 99.9% arsenic extraction at 9.4% acid concentration in 6 h. Sulfuric acid also attained high percentage extraction. The arsenic extraction by these acids reached equilibrium within 2 h. Elovich-type equation best described most of the kinetic data for dissolution of soil components as well as for extraction of arsenic. Dissolution of the soil components could be minimized by ceasing acid washing in 2 h. The acid-washed soil was further stabilized by the addition of lanthanum, cerium, and iron(III) salts or their oxides or hydroxides which form insoluble complex with arsenic. Both salts and oxides of lanthanum and cerium were effective in immobilizing arsenic in the soil attaining less than 0.01 mg/l As in the leaching test.  相似文献   

15.
Burns PE  Hyun S  Lee LS  Murarka I 《Chemosphere》2006,63(11):1879-1891
Leachate derived from unlined coal ash disposal facilities is a potential anthropogenic source of arsenic to the environment. To establish a theoretical framework for predicting attenuation of arsenic by soils subject to ash landfill leachate, which is typically enriched in calcium and sulfate, the adsorption of As(V) and As(III) was characterized from 1 mM CaSO4 for 18 soils obtained down-gradient from three ash landfill sites and representing a wide range in soil properties. As(V) consistently exhibited an order of magnitude greater adsorption than As(III). As(V) adsorption was best described by coupling pH with 15 s DCB-Fe (R2 = 0.851,  = 0.001), although pH coupled to clay, DCB-Fe, or DCB-Al also generated strong correlations. For As(III), pH coupled to Ox–Fe (R2 = 0.725,  = 0.001) or Ox–Fe/Al (R2 = 0.771,  = 0.001) provided the best predictive relationships. Ca2+ induced increases in As(V) adsorption whereas sulfate suppressed both As(V) and As(III) adsorption. Attenuation of arsenic from ash leachate agreed well with adsorption measured from 1 mM CaSO4 suggesting that the use of 1 mM CaSO4 in laboratory adsorption tests is a reasonable approach for estimating arsenic behavior in soils surrounding ash landfills. We also showed that the impact of leachate-induced changes in soil pH over time may not be significant for As(V) adsorption at pH < 7; however, As(III) adsorption may be impacted over a wider pH range especially if phyllosilicate clays contribute significantly to adsorption. The benefits and limitations of predicting arsenic mobility using linearized adsorption coefficients estimated from nonlinear adsorption isotherms or from the relationships generated in this study are also discussed.  相似文献   

16.
This work investigates arsenic mobility, bioavailability and toxicity in marine port sediments using chemical sequential extraction and laboratory toxicity tests. Sediment samples were collected from two different Mediterranean ports, one highly polluted with arsenic and other inorganic and organic pollutants (Estaque port (EST)), and the other one, less polluted, with a low arsenic content (Saint Mandrier port (SM)). Arsenic distribution in the solid phase was studied using a sequential extraction procedure specifically developed for appraising arsenic mobility in sediments. Toxicity assessment was performed on sediment elutriates, solid phases and aqueous arsenic species as single substance using the embryo-toxicity test on oyster larvae (Crassostrea gigas) and the Microtox test with Vibrio fischeri. Toxicity results showed that all sediment samples presented acute and sub-chronic toxic effects on oyster larvae and bacteria, respectively. The Microtox solid phase test allow to discriminate As-contaminated samples from the less contaminated ones, suggesting that toxicity of whole sediment samples is related to arsenic content. Toxicity of dissolved arsenic species as single substance showed that Vibrio fischeri and oyster larvae are most sensitive to As(V) than As(III). The distribution coefficient (Kd) of arsenic in sediment samples was estimated using results obtained in chemical sequential extractions. The Kd value is greater in SM (450 L kg?1) than in EST (55 L kg?1), indicating that arsenic availability is higher for the most toxic sediment sample (Estaque port). This study demonstrates that arsenic speciation play an important role on arsenic mobility and its bioavailability in marine port sediments.  相似文献   

17.
Arsenic concentrations and solid-phase speciation were assessed as a function of depth through Fe-media beds for two commercially available products (Granular Ferric Hydroxide-GFH and Bayoxide E33-E33) from pilot-scale water treatment field tests. These results were compared with data from solution (de-ionized water-DI-H2O) concentrations of As equilibrated with Fe-media in an anoxic environment at 4 degrees C. The materials had a high capacity for As (GFH media 9620 mg kg(-1) As, E33 Media 5246 mg kg(-1)). Arsenic concentrations decreased with bed depth. For E33, X-ray absorption near-edge spectroscopy results showed that As(V) was the dominant solid-phase species. For GFH, As(III) was detected and the proportion (relative to As(V)) of As(III) increased with bed depth. Arsenic concentrations in DI-H2O equilibrated with the media were low (35 microg l(-1)) over a period of 50 d. Arsenic concentrations in the equilibrated solutions also decreased with depth. Results from tests on soluble As speciation show that As in solution is in the form of As(V). Kinetic desorption experiments carried out at different pH values (3, 5, 7, 8, and 9) show that the media exhibit some acid/base neutralization capacity and tend to bind As sufficiently. Concentrations of As in the pH desorption experiments were in the same order of magnitude as the toxicity characteristic leaching procedure extractions (tens of microgl(-1)) except at low pH values. For the GFH media tested at a pH of three, As increases in solution and is mainly associated with colloidal (operationally defined as between 0.1 and 1.0 microm) iron.  相似文献   

18.
Xu W  Wang H  Wu K  Liu R  Gong W  Qu J 《Water environment research》2012,84(6):521-528
Ferric and manganese binary oxide (FMBO) has been used to remediate an arsenic (As)-polluted river in China, but insufficient data was available to (1) evaluate its effects on the environment and (2) propose a feasible strategy of addressing the arsenic-bearing FMBO. The desorption behavior of arsenic in the presence of four competitive anions (i.e., phosphate, silicate, sulfate, and bicarbonate) at different concentrations was investigated with pH ranging from 3 to 11. The presence of these anions promoted the desorption of arsenic from arsenic-bearing FMBO and followed the sequence of phosphate > silicate > sulfate approximately equal to bicarbonate across a wide pH range. Desorption of arsenate (As[V]) was more significant than that of arsenite (As[III]). Sequence dissolution of arsenic-bearing FMBO particles by NH4-oxalate/oxalic acid and hydrochloric acid were performed. The laboratory results indicated that As(III) was primarily occluded in the crystalline parts of the FMBO. The desorption behavior of arsenic could be described by kinetic models using the Elovich and power function equations under different pH conditions and was related to the adsorption of phosphate and silicate. pH played an important role in the desorption of arsenic, because of its effects on the species distribution of anions, surface charge of the arsenic-bearing FMBO, and subsequent electrostatic forces between anions and FMBO.  相似文献   

19.
The aim of this study is to evaluate and understand the electrocoagulation/flocculation (ECF) process to remove arsenic from both model and natural waters with low mineral content and to compare its performances to the coagulation/flocculation (CF) process already optimized. Experiments were thus conducted with iron electrodes in the same specific treatment conditions (4≤current density (mAcm(-2))≤33) to study the influence of organic matter on arsenic removal in conditions avoiding the oxidation step usually required to improve As(III) removal. The process performance was evaluated by combining quantification of arsenic residual concentrations and speciation and dissolved organic carbon residual concentrations with zeta potential and turbidity measurements. When compared to CF, ECF presented several disadvantages: (i) lower As(V) removal yield because of the ferrous iron dissolved from the anode and the subsequent negative zeta potential of the colloidal suspension, (ii) higher residual DOC concentrations because of the fractionation of high molecular weight compounds during the treatment leading to compounds less prone to coagulate and (iii) higher residual turbidities because of the charge neutralization mechanisms involved. However, during this process, As(III) was oxidized to As(V) improving considerably its removal whatever the matrix conditions. ECF thus allowed to improve As(III) removal without applying an oxidation step that could potentially lead to the formation of toxic oxidation by-products.  相似文献   

20.
Tao Y  Zhang S  Jian W  Yuan C  Shan XQ 《Chemosphere》2006,65(8):1281-1287
Oxalate is exuded by plants in the rhizosphere and plays an important role in the soil/root interactions. Phosphate fertilizer is widely used all over the world and may influence the behavior of arsenic (As) in soils. In this study oxalate and phosphate were used as extractants to investigate their effects on the release of As from three As-contaminated soils and the chemical speciation of As. Concentrations of arsenite (As(III)) and arsenate (As(V)) released progressively increased by increasing the concentrations of oxalate or phosphate. The released As(V) content was higher than that of As(III) and the differences between As(V) and As(III) released by oxalate was more obvious than by phosphate. Greenhouse experiment was conducted to evaluate the effects of oxalate and phosphate on As uptake by wheat (Triticum vulgare L.). Addition of oxalate or phosphate resulted in the increase of As accumulation in both wheat root and shoot and the effect of phosphate was more obvious than that of oxalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号