首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sim WJ  Lee JW  Shin SK  Song KB  Oh JE 《Chemosphere》2011,82(10):1448-1453
We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L−1) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L−1), H-WWTPs (0.068-0.130 μg L−1) and P-WWTPs (0.015-0.070 μg L−1). Like the influents, the L-WWTPs (0.003-0.729 μg L−1) and the M-WWTPs (0.001-0.299 μg L−1) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L−1) and P-WWTPs (0.011 μg L−1 in one sample). The L-WWTPs (37.5-543 μg kg−1, dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg−1, dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs.  相似文献   

2.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   

3.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

4.
Sim WJ  Lee JW  Lee ES  Shin SK  Hwang SR  Oh JE 《Chemosphere》2011,82(2):179-186
Twenty-four pharmaceuticals were measured in wastewater from 12 municipal wastewater treatment plants (M-WWTPs), four livestock WWTPs (L-WWTPs), four hospital WWTPs (H-WWTPs) and four pharmaceutical manufacture WWTPs (P-WWTPs). The total concentration of pharmaceuticals in the influent samples was highest in the L-WWTPs followed by the P-WWTPs, H-WWTPs and M-WWTPs. The effluents had different patterns of pharmaceuticals than their corresponding influents because of the different fate of each compound in the WWTPs. Non-steroidal anti-inflammatory drugs (NSAIDs) were the most dominant in the influents from the M-WWTPs and P-WWTPs, while antibiotics were dominantly detected in the L-WWTP. In the H-WWTP influents, NSAIDs, caffeine and carbamazepine were dominant. In the P-WWTPs, the distribution of pharmaceuticals in the effluents varied with sampling sites and periods. The M-WWTP influents had the highest daily loads, while the effluents showed somewhat similar levels in all source types.  相似文献   

5.
To investigate waste water treatment plants (WWTPs) as sources of polyfluorinated compounds (PFCs), polybrominated diphenyl ethers (PBDEs) and synthetic musk fragrances to the atmosphere, air samples were simultaneously taken at two WWTPs and two reference sites using high volume samplers. Contaminants were accumulated on glass fiber filters and PUF/XAD-2/PUF cartridges, extracted compound-dependent by MTBE/acetone, methanol, or hexane/acetone and detected by GC-MS or HPLC-MS/MS. Total (gas + particle phase) concentrations ranged from 97 to 1004 pg m−3 (neutral PFCs), <MQL to 13 pg m−3 (ionic PFCs), 5781 to 482,163 pg m−3 (musk fragrances) and <1 to 27 pg m−3 (PBDEs) and were usually higher at WWTPs than at corresponding reference sites, revealing that WWTPs can be regarded as sources of musk fragrances, PFCs and probably PBDEs to the atmosphere. Different concentrations at the two WWTPs indicated an influence of WWTP size or waste water origin on emitted contaminant amounts.  相似文献   

6.
A monitoring programme was carried out on wastewater, surface and drinking water on the NW area of Spain during the four seasons of a year period (November 2007-September 2008). This study covered a series of emerging pollutants of different classes, including pharmaceuticals, neutral and acidic organophosphorus flame retardant/plasticizers (OPs), triclosan, phenoxy-herbicides, insect repellents and UV filters. From the total set of 53 compounds, 19 were found in raw wastewater with median concentrations higher than 0.1 μg L−1. Among them, salicylic acid, ibuprofen and the UV filter benzophenone-4 (BP-4) were the most concentrated, exceeding the 1 μg L−1 median value. Subsequently, 11 of these contaminants are not efficiently enough removed in the small WWTPs tested and their median concentrations in effluents still surpassed the 0.1 μg L−1, so that they can spread through surface water. These chemicals are the pharmaceuticals naproxen, diclofenac and atenolol; the OPs tri(2-chloroethyl) phosphate (TCEP), tri(chloropropyl) phosphate (TCPP), tri-n-butyl phosphate (TnBP), diphenyl phosphate (DPhP) and diethylhexyl phosphate (DEHP); and the sulphonate UV filters BP-4 and 2-phenylbenzimidazole-5-sulphonic acid (PBSA). These OPs were then the dominant emerging pollutants occurring in surface and drinking water, where they are detected in the 20-200 ng L−1 range. Pharmaceuticals and UV filters are typically below the 10 ng L−1 level. Finally, herbicides were only detected in the last sampling campaign under the 100 ng L−1 drinking water European Union limit.  相似文献   

7.
Lahti M  Oikari A 《Chemosphere》2011,85(5):826-831
Wastewater treatment plants (WWTP) are important sources of settleable particulate material (SPM), heading to sediments with natural suspended solids. To date, there is little information about the fate of pharmaceuticals in sediment systems. In this study, the objective was to determine if pharmaceuticals are detected in SPM at locations near WWTPs or even in rural areas, thus being susceptible for sedimentation.SPM samples were collected from 10 sites in Finland, grouped as reference, rural and wastewater effluent sites. SPM collectors were placed about 35 cm above bottom for about 2 months during summer. After extraction, a set of 17 pharmaceuticals was analyzed.Several pharmaceuticals were detected in SPM accumulated at sites next to WWTPs. The concentration of citalopram was notably high (300-1350 ng g−1 dw). Also bisoprolol and ciprofloxacin were detected at high concentrations (6-325 and 9-390 ng g−1 dw, respectively). In contrast, none of the pharmaceuticals were detected from reference sites and only two were found from a single rural site.There is no previous information about the presence of pharmaceuticals in SPM. The results showed that pharmaceuticals are sorbed to particles in WWTP and nearby, eventually ending up in sediments. These results also indicate that pharmaceuticals are not markedly contaminating sediments of rural areas in Finland.  相似文献   

8.
The project studied the occurrence, fate, and seasonal variation of 14 antibiotics, from five wastewater treatment plants (WWTPs) in Shanghai. The results indicated that ofloxacin, sulfamethoxazole, and oxytetracycline were the predominant antibiotics, with maximum concentrations of 1208.20, 959.13, and 564.30 ng/L in influents, while 916.88, 106.60, and 337.81 ng/L in effluents, respectively. The level of antibiotics in WWTPs obviously varied with seasonal changes, and higher detectable frequencies and concentrations were found in winter. The daily mass loads per capita of amoxicillin, enrofloxacin, and oxytetracycline in the study were all higher than those in other regions/countries, such as Hong Kong, Australia, and Italy. The elimination of antibiotics through these WWTPs was incomplete, and a wide range of removal efficiencies during the different treatment process and seasons were observed (?500.56 to 100 % in winter and ?124.24 to 94.21 % in summer). Sulfonamides were relatively easy to be removed in WWTPs and the ultraviolet (UV) process can effectively improve the removal efficiency. Risk assessment of antibiotics in effluents was estimated. Only AMOX’s hazard quotient (HQ) was higher than 0.01. Even though the environmental risks in the study were estimated to be low, the potential negative effects on aquatic ecosystems should call our attention as continually discharge in the long term.  相似文献   

9.
Buth JM  Ross MR  McNeill K  Arnold WA 《Chemosphere》2011,84(9):1238-1243
Triclosan, a common antimicrobial agent, may react during the disinfection of wastewater with free chlorine to form three chlorinated triclosan derivatives (CTDs). This is of concern because the CTDs may be photochemically transformed to tri- and tetra-chlorinated dibenzo-p-dioxins when discharged into natural waters. In this study, wastewater influent, secondary (pre-disinfection) effluent, and final (post-disinfection) effluent samples were collected on two occasions each from two activated sludge wastewater treatment plants, one using chlorine disinfection and one using UV disinfection. Concentrations of triclosan and three CTDs were determined using ultra performance liquid chromatography-triple quadrupole mass spectrometry with isotope dilution methodology. Triclosan and the CTDs were detected in every influent sample at levels ranging from 453 to 4530 and 2 to 98 ng L−1, respectively, though both were efficiently removed from the liquid phase during activated sludge treatment. Triclosan concentrations in the pre-disinfection effluent ranged from 36 to 212 ng L−1, while CTD concentrations were below the limit of quantification (1 ng L−1) for most samples. In the treatment plant that used chlorine disinfection, triclosan concentrations decreased while CTDs were formed during chlorination, as evidenced by CTD levels as high as 22 ng L−1 in the final effluent. No CTDs were detected in the final effluent of the treatment plant that used UV disinfection. The total CTD concentration in the final effluent of the chlorinating treatment plant reached nearly one third of the triclosan concentration, demonstrating that the chlorine disinfection step played a substantial role in the fate of triclosan in this system.  相似文献   

10.
The occurrence, removal efficiency and seasonal variation of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in eight sewage treatment plants (STPs) in Beijing, China. A total of 14 antibiotics were detected in wastewater samples, with the maximum concentration being 3.1 μg L−1 in the influent samples and 1.2 μg L−1 in the effluent samples. The most frequently detected antibiotics were ofloxacin, norfloxacin, sulfadiazine, sulfamethoxazole, erythromycin and roxithromycin; of these, the concentration of ofloxacin was the highest in most of the influent and effluent samples. Eighteen antibiotics were detected in the sludge samples, with concentrations ranging from 1.0 × 10−1 to 2.1 × 104 μg kg−1. The dominant antibiotics found in the sludge samples were the fluoroquinolones, with ofloxacin having the highest concentration in all the sludge samples. The antibiotics could not be removed completely by the STPs, and the mean removal efficiency ranged from −34 to 72%. Of all the antibiotics, the fluoroquinolones were removed comparatively more efficiently, probably due to their adsorption to sludge. Seasonal variation of the antibiotics in the sludge samples was also studied. The concentrations of antibiotics in winter were higher than in spring and autumn. Since the total levels of the fluoroquinolones detected in the influent samples were lower than the predicted no-effect concentration (PNEC) of 8.0 μg L−1, the residues of these antibiotics would be unlikely to have adverse effects on microorganisms involved in sewage treatment processes.  相似文献   

11.
Jiang L  Hu X  Yin D  Zhang H  Yu Z 《Chemosphere》2011,82(6):822-828
Water samples were collected from 19 sampling sites along the Huangpu River in June and December 2009. The occurrence, distribution and seasonal variation of 22 antibiotics, including four tetracyclines, three chloramphenicols, two macrolides, six fluoroquinolones, six sulfonamides and trimethoprim were investigated. It was found that all 19 sampling sites were contaminated by antibiotics. Four antibiotics (sulfamerazine, norfloxacin, fleroxacin and sarafloxacin) were not detected. The detection frequencies of the other 18 antibiotics were in the range of 5.3-100%. The median concentrations of the detected antibiotics ranged from quantification limits to 36.71 ng L−1 (tetracycline) in June and to 313.44 ng L−1 (sulfamethazine) in December. The number of detected antibiotics and the overall antibiotic concentrations were higher in December than in June due to the different river flow conditions. Different dominant antibiotics were observed for each group of antibiotics between June and December. Higher total concentrations of veterinary antibiotics such as tetracyclines were observed in suburban sampling sites than in unban sites, indicating the role of livestock and agricultural activities as an important source of antibiotic contamination.  相似文献   

12.
This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L−1 respectively, and were reduced to 0.7 and 12 ng L−1 in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L−1. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L−1). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA.  相似文献   

13.
An intensive sampling campaign has been carried out in a municipal wastewater treatment plant (WWTP) to assess the dynamics of the influent pharmaceutical active compounds (PhAC) and musks. The mass loadings of these compounds in wastewater influents displayed contrasting diurnal variations depending on the compound. The musks and some groups of PhACs tended to follow a similar diurnal trend as compared to macropollutants, while the majority of PhACs followed either the opposite trend or no repeatable trend. The total musk loading to the WWTP was 0.74 ± 0.25 g d−1, whereas the total PhAC mass loading was 84.7 ± 63.8 g d−1. Unlike the PhACs, the musks displayed a high repeatability from one sampling day to the next. The range of PhAC loadings in the influent to WWTPs can vary several orders of magnitude from one day or week to the next, representing a challenge in obtaining data for steady-state modelling purposes.  相似文献   

14.
A HPLC-MS/MS method is presented for the simultaneous determination of frequently used artificial sweeteners (ASs) and the main metabolite of aspartame (ASP), diketopiperazine (DKP), in environmental water samples using the direct-injection (DI) technique, thereby achieving limits of quantification (LOQ) of 10 ng L−1. For a reliable quantification of ASP pH should be adjusted to 4.3 to prevent formation of the metabolite. Acesulfame (ACE), saccharin (SAC), cyclamate (CYC) and sucralose (SUC) were ubiquitously found in water samples. Highest concentrations up to 61 μg L−1 of ACE were found in wastewater effluents, followed by surface water with concentrations up to 7 μg L−1, lakes up to 600 ng L−1 and groundwater and tap water up to 70 ng L−1. The metabolite DKP was only detected in wastewater up to 200 ng L−1 and at low detection frequencies.  相似文献   

15.
Li W  Shi Y  Gao L  Liu J  Cai Y 《Chemosphere》2012,89(11):1307-1315
This study investigated the presence and distribution of 22 antibiotics, including eight quinolones, nine sulfonamides and five macrolides, in the water, sediments, and biota samples from Baiyangdian Lake, China. A total of 132 samples were collected in 2008 and 2010, and laboratory analyses revealed that antibiotics were widely distributed in the lake. Sulfonamides were the dominant antibiotics in the water (0.86-1563 ng L−1), while quinolones were prominent in sediments (65.5-1166 μg kg−1) and aquatic plants (8.37-6532 μg kg−1). Quinolones (17.8-167 μg kg−1) and macrolides [from below detection limit (BDL) to 182 μg kg−1] were often found in aquatic animals and birds. Salvinia natans exhibited the highest bioaccumulation capability for quinolones among three species of aquatic plants. Geographical differences of antibiotic concentrations were greatly due to anthropogenic activities. Sewage discharged from Baoding City was likely the main source of antibiotics in the lake. Risk assessment of antibiotics on aquatic organisms suggested that algae and aquatic plants might be at risk in surface water, while animals were likely not at risk.  相似文献   

16.
Wei R  Ge F  Huang S  Chen M  Wang R 《Chemosphere》2011,82(10):1408-1414
The objective of this investigation was to obtain a broad profile of veterinary antibiotics residues in animal wastewater and surface water around large-scale livestock and poultry farms in Jiangsu Province of China. Therefore, 53 samples collected from 27 large-scale animal farms in 11 cities and counties of Jiangsu Province in 2009, were monitored for 10 selected veterinary antibiotics using solid phase extraction and high performance liquid chromatography/electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS) techniques. Ten veterinary antibiotics were found in animal wastewaters, eight antibiotics were detected in pond waters, and animal farm-effluents and river water samples were contaminated by nine antibiotics. The most frequently detected antibiotics were sulfamethazine (75%), oxytetracycline (64%), tetracycline (60%), sulfadiazine (55%) and sulfamethoxazole (51%) which were detected with a maximum concentration of 211, 72.9, 10.3, 17.0 and 63.6 μg L−1, respectively. The maximum concentration of 0.55 μg L−1 for cyromazine, 3.67 μg L−1 for chlortetracycline, 0.63 μg L−1 for sulfadoxine, 39.5 μg L−1 for doxycycline and 0.64 μg L−1 for sulfaquinoxaline were determined in the collected samples. In general, the maximum concentration of the selected veterinary antibiotics was detected in animal wastewaters except for chlortetracycline in animal farm-effluents. In addition, residue levels of selected veterinary antibiotics in animal wastewater and surface water around the farms were related to animal species and have a high spatial variation.  相似文献   

17.
BACKGROUNDS: Perfluorinated compounds (PFCs) have drawn much attention due to their environmental persistence, ubiquitous existence, and bioaccumulation potential. Wastewater treatment plants (WWTPs) are fundamental utilities in cities, playing an important role in preventing water pollution by lowering pollution load in waste waters. However, some of the emerging organic pollutants, like PFCs cannot be efficiently removed by traditional biological technologies in WWTPs, and some even increase in effluents compared to influents due to the incomplete degradation of precursors. Hence, WWTPs are considered to be a main point source in cities for PFCs that enter the aquatic environment. However, the mass flow of PFCs from WWTPs has seldom been analyzed for a whole city. Hence, in the present study, 11 PFCs including series of perfluoroalkyl carboxylic acids (PFCAs, C4-C12) and two perfluoroalkyl sulfonates (PFASs, C6 and C8) were measured in WWTP influents and effluents and sludge samples from six municipal WWTPs in Tianjin, China. Generation and dissipation of the target PFCs during wastewater treatment process and their mass flow in effluents were discussed. RESULTS: All the target PFCs were detected in the six WWTPs, and the total PFC concentration in different WWTPs was highly influenced by the population density and commercial activities of the corresponding catchments. Perfluorooctanoic acid (PFOA) was the predominant PFC in water phase, with concentrations ranging from 20 to 170 ng/L in influents and from 30 to 145 ng/L in effluents. Concentrations of perfluoroalkyl sulfonates decreased substantially in the effluent compared to the influent, which could be attributed to the sorption onto sludge, whereas concentrations of PFOA and some other PFCAs increased in the effluent in some WWTPs due to their weaker sorption onto solids and the incomplete degradation of precursors. Perfluorooctane sulfonic acid (PFOS) was the predominant PFC in sludge samples followed by PFOA, and their concentrations ranged from 42 to 169 g/kg and from 12 to 68 g/kg, respectively. Sludge-wastewater distribution coefficients (log K(d)) ranged from 0.62 to 3.87 L/kg, increasing with carbon chain length of the homologues. The mass flow of some PFCs in the effluent was calculated, and the total mass flow from all the six municipal WWTPs in Tianjin was 26, 47, and 3.5 kg/year for perfluorohexanoic acid, PFOA, and PFOS, respectively.  相似文献   

18.
The European Union has defined environmental quality standards (EQSs) for surface waters for priority substances and several other pollutants. Furthermore national EQSs for several chemicals are valid in Austria. The study investigated the occurrence of these compounds in municipal wastewater treatment plant (WWTP) effluents. In a first screening of 15 WWTPs relevant substances were identified, which subsequently were monitored in 9 WWTPs over 1 year (every 2 months). Out of 77 substances or groups of substances (including more than 90 substances) 13 were identified as potentially relevant in respect to water pollution and subjected to the monitoring, whereas most other compounds were detected in concentrations far below the respective EQS for surface waters and therefore not further considered. The preselected 13 compounds for monitoring were cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), zinc (Zn), diuron, polybrominated diphenyl ethers (PBDEs), di(ethyl-hydroxyl)phthalate (DEHP), tributyltin compounds (TBT), nonylphenoles (NP), adsorbable organic halogens (AOX) and the complexing agents ethylenediaminetetraacetic acid (EDTA) as well as nitrilotriacetic acid (NTA). In the effluents of WWTPs the concentrations of the priority substances Cd, NP, TBT and diuron frequently exceeded the respective EQS, whereas the concentrations for DEHP and Ni were below the respective EQS. The effluent concentrations for AOX, EDTA, NTA, Cu, Se and Zn frequently are in the range or above the Austrian EQS for surface waters. Besides diuron and EDTA all compounds are removed at least partially during wastewater treatment and for most substances the removal via the excess sludge is the major removal pathway. For the 13 compounds which were monitored in WWTP effluents population equivalent specific discharges were calculated. Since for many compounds no or only few information is available, these population equivalent specific discharges can be used to assess emissions from municipal WWTPs to surface waters as well as to make a first assessment of the impact of a discharge on surface waters chemical status. Comparing discharges and river pollution on a load basis, the influence of diffuse sources becomes obvious and therefore should also be taken into consideration in river management.  相似文献   

19.
Chen Y  Lu A  Li Y  Yip HY  An T  Li G  Jin P  Wong PK 《Chemosphere》2011,84(9):1276-1281
The photocatalytic disinfection of Escherichia coli K-12 is investigated by the natural sphalerite (NS) under different spectra, wavelengths and intensities of visible light (VL) emitted by light-emitting-diode lamp (LED). The spectrum effect of VL on disinfection efficiency is studied by using white LED, fluorescent tube (FT) and xenon lamp (XE), which indicates that the “discreted peak spectrum” of FT is more effective to inactivate bacteria than “continuous spectrum” of LED and XE. Besides, the photocatalytic disinfection of bacteria is compared under different single spectrum (blue, green, yellow and red color) LEDs. The results show that the most effective wavelength ranges of VL for photocatalytic disinfection with the NS are 440-490 and 570-620 nm. Furthermore, a positive relationship is obtained between the disinfection efficiency and the VL intensity. The experiment shows that NS can completely inactivate 107 cfu mL−1E. coli K-12 within 8 h irradiation by white LED with the intensity of 200 mW cm−2 at pH 8. Moreover, the destruction process of the cell wall and the cell membrane are directly observed by TEM. Finally, no bacterial colony can be detected within a 96 h regrowth test of inactivated bacteria, which reveals that the VL-photocatalytic disinfection leads to an irreversible damage to the bacterial cells.  相似文献   

20.
Feedlots are potential point sources for the flow of antibiotics into the environment due to common use of antibiotics such as sulfamethazine, chlortetracycline and tylosin. Hence soils and manures originating from a grassland control, an experimental and a commercial feedlot were analyzed and mass balances were calculated for these antibiotics. Up to 9990 μg kg−1 sulfamethazine and 401 μg kg−1 chlortetracycline on a dry matter basis were determined in feedlot manure. Soil concentrations were two orders of magnitude smaller. This corresponds to 7-40% of the calculated residual amount. In the commercial feedlot chlortetracycline was found down to soil depths of −40 cm; sulfamethazine was still detectable 1 year after medication. Sulfamethazine and chlortetracycline were additionally determined in manure of a control treatment in the experimental feedlot where cattle never received antibiotics. This was attributed to runoff from upslope pens. Consequently, antibiotics partially persist within feedlots and may be dislocated into the surrounding environment by vertical transport and runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号