首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Background, aim and scope  

The environmental presence of polybrominated diphenyl ethers (PBDEs), among which BDE-47 and BDE-99 are particularly abundant, makes toxicity data necessary to assess the hazard risk posed by PBDE to aquatic organisms. This study examines the effects of BDE-47 and BDE-99 on embryo-larval stages of the marine flatfish turbot.  相似文献   

2.
Mei Z  Shen Z  Zhao Q  Yuan T  Zhang Y  Xiang F  Wang W 《Chemosphere》2008,70(8):1399-1404
The Hg(0) oxidation ability and reusability of Cu(x)Co(3-x)O(4) were investigated in an attempt to improve SO(2) anti-poisoning ability of metal oxide and produce more economic and effective sorbents for the control of Hg(0) emission from combustion processes. The influence of copper content on Cu(x)Co(3-x)O(4)'s (0.75< or = x < or =2.25) oxidation ability of Hg(0) in the presence of SO(2) was investigated. According to the X-ray diffraction, Brunauer-Emmett-Teller (BET) and mass balance analysis on mercury, we found that Cu(1.5)Co(1.5)O(4) showed the highest S(BET) and best Hg(0) oxidation ability. With continuous increase of x from 0.75 to 2.25, Cu(x)Co(3-x)O(4)'s SO(2) anti-poisoning ability increased. The analysis results of the X-ray photoelectron spectroscopy manifested that the adsorptive mercury species on spent Cu(1.5)Co(1.5)O(4) was HgO. The spent Cu(1.5)Co(1.5)O(4) could be regenerated by thermal decomposition at 673K and regenerated Cu(1.5)Co(1.5)O(4) showed higher Hg(0) oxidation ability due to Hg-doping. Regenerated enrichment Hg(0) was collected using activated carbon at an ambient temperature to eliminate the secondary pollution.  相似文献   

3.
The negative effects of overexposure to ultraviolet (UV) radiation in humans, including sunburn and light-induced cellular injury, are of increasing public concern. 4-Methylbenzylidene camphor (4-MBC), an organic chemical UV filter, is an active ingredient in sunscreen products. To date, little information is available about its neurotoxicity during early vertebrate development. Zebrafish embryos were exposed to various concentrations of 4-MBC in embryo medium for 3 days. In this study, a high concentration of 4-MBC, which is not being expected at the current environmental concentrations in the environment, was used for the purpose of phenotypic screening. Embryos exposed to 15 μM of 4-MBC displayed abnormal axial curvature and exhibited impaired motility. Exposure effects were found to be greatest during the segmentation period, when somite formation and innervation occur. Immunostaining of the muscle and axon markers F59, znp1, and zn5 revealed that 4-MBC exposure leads to a disorganized pattern of slow muscle fibers and axon pathfinding errors during the innervation of both primary and secondary motor neurons. Our results also showed reduction in AChE activity upon 4-MBC exposure both in vivo in the embryos (15 μM) and in vitro in mammalian Neuro-2A cells (0.1 μM), providing a possible mechanism for 4-MBC-induced muscular and neuronal defects. Taken together, our results have shown that 4-MBC is a teratogen and influences muscular and neuronal development, which may result in developmental defects.  相似文献   

4.
This study was performed to determine the concentrations of some trace metals (Cd, Cu, Pb, Ni, Zn, and Fe) in Holothuria tubuosa (Gmelin, 1788) belonging to Echinoderm species and in sediments that they live at three different stations (Gelibolu, Umur Bey/Lapseki, and Dardanos) on Dardanelles Strait between April 2013 and March 2014. The mean trace metal concentrations determined in H. tubulosa and sediment were as follows: Cd 0.18 mg/kg, Cu 2.43 mg/kg, Pb 2.09 mg/kg, Ni 14.58 mg/kg, Zn 16.86 mg/kg, and Fe 73.46 mg/kg and Cd 0.70 mg/kg, Cu 5.03 mg/kg, Pb 14.57 mg/kg, Ni 27.15 mg/kg, Zn 54.52 mg/kg, and Fe 3779.9 mg/kg, respectively. It was detected that the statistical difference between trace metals determined seasonally in muscle tissue of H. tubulosa was significant (p?>?0.05). As a result of the study, it was detected that H. tubulosa is a bioindicator species in determining Ni trace metal in sediment. The results were compared to the limit values of National and International Food Safety, and it was detected that Cd and Ni concentrations measured in sediment were above LEL of Ni and Cd concentrations according to Sediment Quality Guidelines.  相似文献   

5.
6.
7.

Purpose  

The dyes and dye stuffs present in effluents released from textile dyeing industries are potentially mutagenic and carcinogenic. Phytoremediation technology can be used for remediating sites contaminated with such textile dyeing effluents. The purpose of the work was to explore the potential of Glandularia pulchella (Sweet) Tronc. to decolorize different textile dyes, textile dyeing effluent, and synthetic mixture of dyes.  相似文献   

8.
9.
Insecticides have long been used as the main method in limiting agricultural pests, but their widespread use has resulted in environmental pollution, development of resistances, and biodiversity reduction. The effects of insecticides at low residual doses on both the targeted crop pest species and beneficial insects have become a major concern. In particular, these low doses can induce unexpected positive (hormetic) effects on pest insects, such as surges in population growth exceeding what would have been observed without pesticide application. Methomyl and chlorpyrifos are two insecticides commonly used to control the population levels of the cotton leafworm Spodoptera littoralis, a major pest moth. The aim of the present study was to examine the effects of sublethal doses of these two pesticides, known to present a residual activity and persistence in the environment, on the moth physiology. Using a metabolomic approach, we showed that sublethal doses of methomyl and chlorpyrifos have a systemic effect on the treated insects. We also demonstrated a behavioral disruption of S. littoralis larvae exposed to sublethal doses of methomyl, whereas no effects were observed for the same doses of chlorpyrifos. Interestingly, we highlighted that sublethal doses of both pesticides did not induce a change in acetylcholinesterase activity in head of exposed larvae.  相似文献   

10.
《Chemosphere》2012,86(11):1664-1671
The Connecticut Department of Environmental Protection (CTDEP) commenced monitoring for PCDDs/PCDFs (polychlorinated dibenzodioxins and polychlorinated dibenzofurans) in ambient air in 1987 and adopted the long term (30 d) sampling approach in 1993. The CTDEP method represents the first use of isotopically labeled PCDDs/PCDFs as field surrogates to monitor the behavior of native PCDDs/PCDFs present in actual ambient air samples. This feature first introduced in 1987 was later adopted by US EPA in revisions to sampling methods for PCDDs/PCDFs in ambient air (EPA Method TO9A) as well as development of EPA Reference Method 23 for measurement of PCDDs/PCFDs in stationary source emissions. Results are provided here for a total of twenty-three (23) samples (reported as pairs) representing twelve (12) 30 d sampling events conducted at a site located in metropolitan Hartford CT. Samples were collected in winter months during calendar years 2002–2008. PCDDs/PCDFs concentration data (pg m−3) are reported as both congener sums (Cl4–Cl8) and 2378-substitued congeners. Total PCDDs/PCDFs concentrations for these twelve (12) sampling events ranged from 0.68 pg m−3 (2003) to 4.18 pg m−3 (2004) with a mean concentration of 2.04 pg m−3.Method performance was monitored through use of collocated samples, in field isotopically labeled compounds, isotopically labeled laboratory applied internal standards and field blank samples. Method performance consistently exceeded goals established in USEPA Method TO9A for these same parameters. Average recoveries of in field labeled PCDDs/PCDFs ranged from 97.5% to 104.2%. Average (mean) recoveries for each of the ten (10) isotopically labeled internal standards ranged from 77.0% (13C-OCDF) to 95.5% (13C-2,3,7,8-TCDF). Method precision defined as % RPD data for collocated sampler pairs ranged from 8% to 14% for PCDDs and from 5% to 12% for PCDFs. The mean RPD for all PCDDs/PCDFs combined is 9.6%. Field monitoring results demonstrate method sensitivity for all PCDDs/PCDFs congeners and 2378-substituted congeners to be well below concentrations typically found for these compounds in ambient air (all reported data represent measured concentrations). Quantities (pg) found in field blanks represent the major determinant to achieving further enhancements in method sensitivity for selected congeners (OCDD < 42 fg m−3; 1,2,3,4,6,7,8-HpCDD < 5.7 fg m−3; and 1,2,3,4,6,7,8-HpCDF < 2.1 fg m−3). The CTDEP method represents a highly sensitive and reliable technique for monitoring of PCDDs/PCDFs congeners and other persistent organic pollutants (POPs) at ultra trace levels in ambient air (fg m−3).  相似文献   

11.

Background, aim, and scope  

The disposal problem due to non-degradable petroleum-based plastics has raised the demand for biodegradable polymers. The degradation of poly (lactic acid) (PLA) has been studied for several years, but the understanding of involved mechanisms is still incomplete. Based on our previous studies, and it is hypothesized an enzymatic involvement, the aim of this study was to continue investigations on the degradation of PLA and its nanocomposites by Bacillus licheniformis.  相似文献   

12.
13.
Biosynthesis of nanoparticles has received increasing attention due its effective mode of action, eco-friendly preparation methodology, and less cytotoxicity. In the present study, silver nanoparticles (AgNPs) from aqueous seed extract of Myristica fragrans (nutmeg) were characterized. Gas chromatography–mass spectrometry (GC–MS) analysis revealed the presence of bioactive components acts as effective in reducing and capping agents for converting AgNO3 to AgNPs. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 420 nm, which is the characteristic peak of AgNPs. The functional molecules present in the M. fragrans seed extract and their interaction with the AgNPs were identified by the Fourier transform infrared spectroscopy (FT-IR) analysis. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver nanoparticle and diameter was calculated using Scherrer’s equation. Transmission electron microscope (TEM) image showed spherical shaped particles with an average size of 25 nm. The scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) confirmed the presence of elemental silver. The antibacterial activity of biosynthesized AgNPs was evaluated against multidrug-resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi) according to agar well diffusion, MIC (minimum inhibitory concentration), and IC50 (inhibitory concentration 50%). The results confirm that bacterial growth was significantly reduced in a dose-dependent manner. Further, the cytotoxic effect of biosynthesized AgNPs on rat spleenocytes was analyzed. Thus, it is suggested that the nutmeg-biosynthesized AgNPs could be a lead drug and used effectively to control the MDR S. Typhi, thereby reducing public health issues and environmental pollution.  相似文献   

14.
Yu H  Kennedy EM  Mackie JC  Dlugogorski BZ 《Chemosphere》2007,68(10):2003-2006
Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.  相似文献   

15.
Polychlorobiphenyls (PCB's) adsorbed on silica gel or montmorillonite were degraded mainly to less chlorinated biphenyls by U.V. irradiation (λ = 254 nm). The photodegradation was considerably enhanced by adding triethylamine to the system. The sensitizing effect can be ascribed, like in solution, to the formation of a charge-transfer complex confirmed by fluorescence quenching experiments.  相似文献   

16.
17.
Despite the extensive research, the mechanism of the antimicrobial and biocidal performance of silver nanoparticles has not been unequivocally elucidated yet. Our study was aimed at the investigation of the ability of silver nanoparticles to suppress the growth of three types of algae colonizing the wetted surfaces or submerged objects and the mechanism of their action. Silver nanoparticles exhibited a substantial toxicity towards Chlorococcales Scenedesmus quadricauda, Chlorella vulgaris, and filamentous algae Klebsormidium sp., which correlated with their particle size. The particles had very good stability against agglomeration even in the presence of multivalent cations. The concentration of silver ions in equilibrium with nanoparticles markedly depended on the particle size, achieving about 6 % and as low as about 0.1 % or even less for the particles 5 nm in size and for larger ones (40–70 nm), respectively. Even very limited proportion of small particles together with larger ones could substantially increase concentration of Ag ions in solution. The highest toxicity was found for the 5-nm-sized particles, being the smallest ones in this study. Their toxicity was even higher than that of silver ions at the same silver concentration. When compared as a function of the Ag+ concentration in equilibrium with 5-nm particles, the toxicity of ions was at least 17 times higher than that obtained by dissolving silver nitrite (if not taking into account the effect of nanoparticles themselves). The mechanism of the toxicity of silver nanoparticles was found complex with an important role played by the adsorption of silver nanoparticles and the ions released from the particles on the cell surface. This mechanism could be described as some sort of synergy between nanoparticles and ions. While our study clearly showed the presence of this synergy, its detailed explanation is experimentally highly demanding, requiring a close cooperation between materials scientists, physical chemists, and biologists.  相似文献   

18.
Background, aim, and scope  The adverse environmental impacts of chlorinated hydrocarbons on the Earth’s ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C–F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF3CF2CF2OCH3) (1) and its isomer CF3CF2CF2CH2OH (2). Materials and methods  Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube–mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266–333 and 298–353 K for reactions of HFE-7000 and CF3CF2CF2CH2OH, respectively. Results  The measured room temperature rate constants were k(Cl+CF3CF2CF2OCH3) = (1.24 ± 0.28) × 10−13 cm3 molecule−1 s−1and k(Cl+CF3CF2CF2CH2OH) = (8.35 ± 1.63) × 10−13 cm3 molecule−1 s−1 (errors are 2σ + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k 1(266–333 K) = (6.1 ± 3.8) × 10−13exp[−(445 ± 186)/T] cm3 molecule−1 s−1 and k 2(298–353 K) = (1.9 ± 0.7) × 10−12exp[−(244 ± 125)/T] cm3 molecule−1 s−1 (errors are 2σ). The reactions are reported to proceed through the abstraction of an H atom to form HCl and the corresponding halo-alkyl radical. At 298 K and 1 Torr, yields on HCl of 0.95 ± 0.38 and 0.97 ± 0.16 (errors are 2σ) were obtained for CF3CF2CF2OCH3 and CF3CF2CF2CH2OH, respectively. Discussion  The obtained kinetic rate constants are related to the previous data in the literature, showing a good agreement taking into account the error limits. Comparing the obtained results at room temperature, k 1 and k 2, HFE-7000 is significantly less reactive than its isomer C3F7CH2OH. A similar behavior has been reported for the reactions of other fluorinated alcohols and their isomeric fluorinated ethers with Cl atoms. Literature data, together with the results reported in this work, show that, for both fluorinated ethers and alcohols, the kinetic rate constant may be considered as not dependent on the number of –CF2– in the perfluorinated chain. This result may be useful since it is possible to obtain the required physicochemical properties for a given application by changing the number of –CF2– without changes in the atmospheric reactivity. Furthermore, lifetimes estimations for these CFCs substitutes are calculated and discussed. The average estimated Cl lifetimes are 256 and 38 years for HFE-7000 and C3H7CH2OH, respectively. Conclusions  The studied CFCs’ substitutes are relatively short-lived and OH reaction constitutes their main reactive sink. The average contribution of Cl reactions to global lifetime is about 2% in both cases. Nevertheless, under local conditions as in the marine boundary layer, τ Cl values as low as 2.5 and 0.4 years for HFE-7000 and C3H7CH2OH, respectively, are expected, showing that the contribution of Cl to the atmospheric degradation of these CFCs substitutes under such conditions may constitute a relevant sink. In the case of CF3CF2CF2OCH3, significant activation energy has been measured, thus the use of kinetic rate coefficient only at room temperature would result in underestimations of lifetimes and GWPs. Recommendations and perspectives  The results obtained in this work may be helpful within the database used in the modeling studies of coastal areas. The knowledge of the atmospheric behavior and the structure–reactivity relationship discussed in this work may also contribute to the development of new environmentally acceptable chemicals. New volatile materials susceptible of emission to the troposphere should be subject to the study of their reactions with OH and Cl in the range of temperature of the troposphere. The knowledge of the temperature dependence of the kinetic rate constants, as it is now reported for the case of reactions 1 and 2, will allow more accurate lifetimes and related magnitudes like GWPs. Nevertheless, a better knowledge of the vertical Cl tropospheric distribution is still required.  相似文献   

19.
The electron density, at each carbon atom, of the highest occupied π orbital of thirteen polychlorinated biphenyl (PCB) and one polychlorinated dibenzofuran (PCDF) molecules were calculated and the result was compared with their in vitro and/or in vivo metabolism. We noted that 1. the carbon position at which the frontier electron density was highest was most readily hydroxylated or sulfonated, 2. if the carbon with the highest frontier (π) electrons was occupied by chlorine, either a replacement occurred or the carbon with the next highest electron density was activated for metabolism, 3. due to steric hinderance ‘ortho’ carbons in PCBs were least preferred for such reactions inspite of possessing favorable electron density, 4. this was applicable to both phenobarbitol (PB) - type and 3-methyl cholanthrene (3 MC) - type PCB inducers. Frontier (π) electron density could be an easy guide for understanding the metabolic products of persistent and toxic environmental pollutants in vitro or in vivo and in understanding their environmental fate.  相似文献   

20.
Biogenic emissions of volatile organic compounds (VOCs) play a fundamental role in atmospheric chemistry. Vegetation is the most abundant natural source of VOCs, while terpenoids, as limonene, α and β pinene and mircene, top the plants emission list. Much interest has been demonstrated in oxidation and photooxidation reactions of VOCs, particularly of monoterpenoids, owing to their diversity and to uncertainties regarding their mechanism of reaction. Quantification of primary carbonylic compounds, as well as of biradical reaction components, is highly relevant to the understanding of the major reactions. In this context, taking into account both structural factors and the fact that these compounds are found in the essential oils of plants typically found in Brazil and that they may be present in the atmosphere from emission by the plants, the monoterpenoids (S)-(+)-carvone, (R)-(−)-carvone, (−)-carveol, geraniol and citral (a mixture of the isomers geranial and neral) were selected for this study.The ozonolysis reactions of the monoterpenoids were carried out under dark conditions for all experiments, due to their photochemical reactivity. The analysis of the results lets us propose a mechanism by which these reactions occur. The observed results of the ozonolysis of S and R carvone suggest that the stereochemistry of asymmetric carbon does not affect either in the yields of both formaldehyde and of OH radicals produced in the reaction, or in the reactivity of these compounds, for which the rate constants were in the scale of 10−6 s−1.We found that, in the (−)-carveol's cis and trans mixture, even though the hydroxyl in the axial position—in the case of trans-(C) and cis-(D′) isomers—favors the attack by the ozone molecule on the external double bond, thus increasing the mixture's reactivity , it affects the average production of formaldehyde. The presence of geraniol and citral led to the production of formaldehyde, propanone, glyoxal, methyl–glyoxal and cyclohexanone (OH radicals) as reaction products. The influence of an electron attractor group bonded to the carbon of the double bond, on the reactivity of the double bond, could not be observed in the case of citral, due to strong interference occurring in the instrument in all experiments with this monoterpenoid. For this reason, only the kinetics of geraniol was monitored .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号