首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban lakes are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs from wet and dry atmospheric deposition. Little was reported on the seasonal patterns of atmospheric deposition of PAHs under Asian monsoon climate. Bulk (dry + wet) particle deposition, air-water diffusion exchange, and vapour wet deposition of PAHs in a small urban lake in Guangzhou were estimated based on a year-round monitoring. The total PAH particle deposition fluxes observed were 0.44-3.46 μg m−2 day−1. The mean air-water diffusive exchange flux was 20.7 μg m−2 day−1. The vapour deposition fluxes of PAHs ranged 0.15-8.26 μg m−2 day−1. Remarkable seasonal variations of particulate PAH deposition, air-water exchange fluxes and vapour wet deposition were influenced by seasonal changes in meteorological parameters. The deposition fluxes were predominantly controlled by the precipitation intensity in wet season whereas by atmospheric concentration in dry season.  相似文献   

2.
Transfer efficiency (TE) is introduced as a model output that can be used to characterize the relative ability of chemicals to be transported in the environment and deposited to specific target ecosystems. We illustrate this concept by applying the Berkeley-Trent North American contaminant fate model (BETR North America) to identify organic chemicals with properties that result in efficient atmospheric transport and deposition to the Laurentian Great Lakes. By systematically applying the model to hypothetical organic chemicals that span a wide range of environmental partitioning properties, we identify combinations of properties that favor efficient transport and deposition to the Lakes. Five classes of chemicals are identified based on dominant transport and deposition pathways, and specific examples of chemicals in each class are identified and discussed. The role of vegetation in scavenging chemicals from the atmosphere is assessed, and found to have a negligible influence on transfer efficiency to the Great Lakes. Results indicate chemicals with octanol-water (K(ow)) and air-water (K(aw)) partition coefficients in the range of 10(5)-10(7) and 10(-4)-10(-1) combine efficient transport and deposition to the Great Lakes with potential for biaccumulation in the aquatic food web once they are deposited. A method of estimating the time scale for atmospheric transport and deposition process is suggested, and the effects of degrading reactions in the atmosphere and meteorological conditions on transport efficiency of different classes of chemicals are discussed. In total, this approach provides a method of identifying chemicals that are subject to long-range transport and deposition to specific target ecosystems as a result of their partitioning and persistence characteristics. Supported by an appropriate contaminant fate model, the approach can be applied to any target ecosystem of concern.  相似文献   

3.
Partitioning of hydrophobic organic compounds to the interface between water and air may significantly affect the distribution and transfer of many xenobiotic chemicals between vapor and aqueous phases. The fluorescent probe, 1-methylperylene, was used to investigate the affinity of hydrophobic compounds for the water–air interface by varying the ratio of interfacial surface area to water volume in a fused-quartz cuvette. We found that the water–air/water interface partitioning coefficient [Kw−awi=1.2 mol cm-2awi/(mol ml-1w)] for this polycyclic aromatic hydrocarbon (PAH) was quantitatively consistent with partitioning to the same interface but from the airside, recently reported in the literature for less hydrophobic PAHs. Our results demonstrate significant partitioning from bulk water to the water/air interface for a hydrophobicity range relevant to many xenobiotic compounds. Anticipated implications of this process for the environmental chemistry of hydrophobic compounds include retarded gas-phase transport in unsaturated soils, bubble-mediated transport in water, droplet-mediated transport in the atmosphere, and photochemical reactions.  相似文献   

4.
A flow-through chemical reactor model has been exercised to assess the importance of various oxidation reactions and cloud processes on wet removal and redistribution of atmospheric pollutants and to investigate the effect of in-cloud acidification on precipitation chemistry at the surface. Preliminary results indicate that in-cloud acidification accounts for more than 60% of the wet deposited acids derived from acidification of initial SO2, that 42–57% of water-soluble, non-reactive NH3 and HNO3 are removed by wet deposition. The pseudo-first-order conversion rate of SO2 to SO42− ranges from 3 to 25% h −1 depending on initial and boundary conditions.Sensitivity studies have been carried out to test the importance of time evolution of clouds on partitioning of pollutants in the atmosphere and to investigate the variability of precipitation chemistry due to changes in rate constants. The distributions of NH3 and HNO3 are found to be dependent largely on the cloud microphysical parameters, while the distributions of H2O2 and SO2 depend largely on initial conditions of both species. Individual physical and chemical mechanisms can determine the overall rate of sulfate wet deposition at different stages of cloud evolution.  相似文献   

5.
This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry).  相似文献   

6.
We have added the capability to simulate polychlorinated biphenyls (PCBs) and polychlorinated dibenzo [p] dioxins and polychlorinated dibenzo-furans (PCDD/Fs) to the Community Multiscale Air Quality (CMAQ) modeling system, thus taking advantage of the latter's capability to simulate atmospheric advection, diffusion, gas-phase chemistry, cloud/precipitation, and aerosol processes. The modifications reported here include the addition to the CMAQ system of two gas/particle partitioning models options: the Junge–Pankow adsorption model and the KOA absorption model, as well as chemical transformations and atmosphere/water surface exchange processes for these semi-volatile organics. Simulations for the purpose of model testing and validation were conducted for the years 2000 and 2002 on a domain covering most of North America. Both partitioning models give reasonable results when compared with available measurements. The model predictions of deposition and air concentrations also agree well with measurements. The modeling results also indicate that the long-range transport is important and anthropogenic emissions of PCBs and PCDD/Fs are dominant although surface exchange of PCBs may be important for some clean locations.  相似文献   

7.
This paper focuses on a detailed analysis of the effects of meteorological factors explaining the variability of rain composition.Inorganic composition of 113 individual rain events was measured from May 2002 to October 2005 at a rural site near Chimay, in the western part of the Belgian Ardennes. Original models were fitted for each studied ion (H+, Mg2+, Ca2+, K+, NH4+, Na+, Cl, NO3 and SO42−) to relate rain event concentration or wet deposition to the rainfall volume (R), the length of the antecedent dry period (ADP), the volume of the previous event (Rprev) as well as to the mean wind speed and the prevailing wind direction during both the dry and the rainy periods. These variables explained from 32% (H+) to 69% (NO3) of rain concentration variability. Concentrations decreased logarithmically with increasing R values except in case of H+ for which a positive effect of rain volume on rain concentration was observed. ADP affected positively rain concentrations of all ions excluding K+ and H+ for which, respectively, a nonsignificant and a negative effect of this variable was observed. Increasing Rprev strengthened the effect of the variable R on H+, Mg2+, Ca2+, Na+, NH4+ and SO42− concentrations while it softened the effect of ADP on NO3 concentrations. Wind speed and direction during dry and rainy periods explained together from 8% (K+) to 38% (Na+) of rain concentration total variability. R2 coefficients of the wet deposition models ranged from 0.51 (K+) to 0.79 (SO42−). For all ions, wet deposition increased significantly with increasing R values while the effects of the other variables were similar to those on concentrations. Wind conditions during dry and rainy periods explained from 4% (H+) to 24% (Na+) of wet deposition total variability. On an annual scale, the total dry period duration, the total rainfall volume as well as the shape of the distributions of the length of the antecedent dry periods and of the rain event volume are important parameters that influence annual wet deposition.  相似文献   

8.
We investigate the long-range transport potential (LRTP) of five different classes of hypothetical chemical pollutants (volatile, multimedia, semivolatile, particle-associated and hydrophilic) during a low pressure weather event using a novel 2 (x- and z-axis)-Dimensional Multi-Media Meteorological Model (2D4M). The atmosphere (z-axis) is described by three atmospheric layers, where two layers constitute the boundary layer and the third layer the free troposphere. The 2D4M can describe distinct weather events on a regional scale and calculate the LRTP of chemicals as a function of time during these events. Four weather factors are used to model weather events and their influence on the atmospheric transport of chemicals: (1) temperature, (2) wind speed and mixing dynamics of the troposphere, (3) hydroxyl radical concentrations and (4) precipitation. We have modeled the impact of variability in each of these factors on LRTP of pollutants during a front event associated with a low pressure period that interrupts a dominant high pressure system. The physico-chemical properties of the pollutant determine which specific weather factors contribute most to variability in transport potential during the event. Volatile and multimedia chemicals are mainly affected by changing atmospheric mixing conditions, wind speeds and OH radical concentrations, while semivolatile substances are also affected by temperature. Low-vapor-pressure pollutants that are particle-associated, and water-soluble pollutants are most strongly affected by precipitation. Some chemical pollutants are efficiently transported from the boundary layer into the upper troposphere during the modeled low pressure event and are transported by much higher wind speeds than in the boundary layer. Our model experiments show that the transport potential of volatile, multimedia and semivolatile compounds is significantly increased during a front event as a result of efficient tropospheric mixing and fast wind speeds in the upper troposphere, whereas low-volatility and hydrophilic chemicals are largely scavenged from the atmosphere. In future LRTP assessment of chemical contaminants as required by the Stockholm Convention and the convention on long-range transboundary air pollution, it is therefore advised to prioritize volatile, multimedia and semivolatile chemicals that are identified in initial screening.  相似文献   

9.
Starokozhev E  Sieg K  Fries E  Püttmann W 《Chemosphere》2011,82(10):1482-1488
Laboratory experiments were performed to investigate the partitioning behavior of a set of diverse volatile organic compounds (VOCs). After equilibration at a temperature of 25 °C, the VOC concentrations were measured by headspace method in combination with gas chromatography/mass spectrometry (GC/MS). The obtained data were used to determine the partition coefficients (KP) of VOCs in a gas-liguid-solid system. The results have shown that the presence and nature of solid materials in the working solution control the air-water partitioning of dissolved VOCs. The air/solution partitioning of BTEX and C9-C10 aldehydes was most affected in the presence of diesel soot. KP values decreased by a factor ranging from 1.5 for toluene to 3.0 for ethylbenzene. The addition of mineral dust in the working solution exhibited greater influence on the partitioning of short aldehydes. KP values decreased by a factor of 1.8. The experimental partition coefficients were used to develop a predictive model for partitioning of BTEX and n-aldehydes between air, water and solid phases.  相似文献   

10.
The atmospheric fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas–particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5–8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl4–5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.  相似文献   

11.
In this paper we report measurements of SO2-4 fluxes in throughfall and bulk deposition across an elevational transect from 800 to 1275 m on Slide Mountain in the Catskill Mountains of southeastern New York State. The net throughfall flux of SO2-4 (throughfall-bulk deposition), which we attribute to cloud and dry deposition, increased by roughly a factor of 13 across this elevational range. Part of the observed increase results from the year-round exposure of evergreen foliage at the high-elevation sites, compared to the lack of foliage in the dormant season in the deciduous canopies at low elevations. Comparison of the net throughfall flux with estimates of cloud deposition suggests that both cloud deposition and dry deposition increased with elevation. Dry deposition estimates from a nearby monitoring site fall within the measured range of net throughfall flux for SO2-4. The between-site variation in net throughfall flux was very high at the high-elevation sites, and less so at the lower sites, suggesting that studies of atmospheric deposition at high-elevations will be complicated by extreme spatial variability in deposition rates. Studies of atmospheric deposition in mountainous areas of the eastern U.S. have often emphasized cloud water deposition, but these results suggest that elevational increases in dry deposition may also be important.  相似文献   

12.
Atmospheric deposition of phthalate esters in a subtropical city   总被引:1,自引:0,他引:1  
In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑16PAEs ranged from 3.41 to 190 μg m?2 day?1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (DiBP), Di-n-butyl phthalate (DnBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.  相似文献   

13.
Using the well-known Regional Atmospheric Modelling System (RAMS) version 4.3 an integrated system able to simulate the atmospheric mercury cycle has been developed. Basic processes of the mercury atmospheric cycle have been incorporated into the atmospheric model. The model deals with elemental Hg (Hg0), divalent gaseous Hg (Hg2) and particulate Hg (HgP). Wet deposition mechanisms used to describe the removal of Hg2 and HgP are merged with the detailed cloud microphysical scheme in order to provide better representation of the wet deposition processes. The advantages of this approach have been examined through results intercomparison with simulated Hg wet deposition using CMAQ-Hg from previous work for two evaluation periods: 4 April–2 May 1995, and 20 June–18 July 1995. An attempt to clarify the main parameters that affect wet deposition mechanism of mercury is also made.  相似文献   

14.
15.
Multifunctional organic compounds are thought to constitute a major component of the organic matter found in atmospheric particles. Their partitioning into the organic matter depends on their structure, their chemical properties and the properties of the absorbing matrix. It was recently shown that octanol is a suitable surrogate for organic particles and the octanol–air partition coefficient (KOA) was suggested as a useful tool for estimating the partitioning of organic compounds into atmospheric particles that contain high organic mass fractions. In this paper, we present a new and simple technique for the determination of KOA using solid phase microextraction (SPME) relative to a known Henry's law constant. We apply the technique for the determination of KOA of β-, γ- and δ-C3–C5 hydroxy alkyl nitrates. The temperature dependence of KOA for some of the compounds is also measured. It is shown that the solubility constants of these compounds are higher in octanol than in water and that the solubility in octanol increases with the length of the hydrophobic chain and with increasing distance between the hydroxy and the nitrooxy groups. Partition coefficients between the gas and particulate phase (Kp) are calculated using the determined KOA values and their atmospheric implications are discussed.  相似文献   

16.
In this study, we present the response of model results to different scientific treatments in an effort to quantify the uncertainties caused by the incomplete understanding of mercury science and by model assumptions in atmospheric mercury models. Two sets of sensitivity simulations were performed to assess the uncertainties using modified versions of CMAQ-Hg in a 36-km Continental United States domain. From Set 1 Experiments, it is found that the simulated mercury dry deposition is most sensitive to the gaseous elemental mercury (GEM) oxidation product assignment, and to the implemented dry deposition scheme for GEM and reactive gaseous mercury (RGM). The simulated wet deposition is sensitive to the aqueous Hg(II) sorption scheme, and to the GEM oxidation product assignment. The inclusion of natural mercury emission causes a small increase in GEM concentration but has little impact on deposition. From Set 2 Experiments, it is found that both dry and wet depositions are sensitive to mercury chemistry. Change in model mercury chemistry has a greater impact on simulated wet deposition than on dry deposition. The kinetic uncertainty of GEM oxidation by O3 and mechanistic uncertainty of Hg(II) reduction by aqueous HO2 pose the greatest impact. Using the upper-limit kinetics of GEM–O3 reaction or eliminating aqueous Hg(II)–HO2 reaction results in unreasonably high deposition and depletion of gaseous mercury in the domain. Removing GEM–OH reaction is not sufficient to balance the excessive mercury removal caused by eliminating the HO2 mechanism. Field measurements of mercury dry deposition, better quantification of mercury air-surface exchange and further investigation of mercury redox chemistry are needed for reducing model uncertainties and for improving the performance of atmospheric mercury models.  相似文献   

17.
Strategies for including vegetation compartments in multimedia models   总被引:6,自引:0,他引:6  
Cousins IT  Mackay D 《Chemosphere》2001,44(4):643-654
The incentives for including vegetation compartments in multimedia Level I, II and III fugacity calculations are discussed and equations and parameters for undertaking the calculations suggested. Model outputs with and without vegetation compartments are compared for 12 non-ionic organic chemicals with a wide variety of physical-chemical properties. Inclusion of vegetation compartments is shown to have a significant effect on two classes of chemicals: (1) those that are taken up by atmospheric deposition and (2) those that are taken up by transpiration through the plant roots. It is suggested that uptake from the atmosphere is important for chemicals with logK(OA) greater than 6 and a logK(AW) of greater than -6. Plant uptake by transpiration is important for chemicals with logK(OW) less than 2.5 and a logK(AW) of less than -1. At logK(OA) > 9 atmospheric uptake is dominated by particle-bound deposition and the importance of partitioning to vegetation is largely dependent on the relative magnitude of the particle deposition velocities to soil and vegetation. These property ranges can be used to determine if a chemical will significantly partition to vegetation. If the chemical falls outside the property ranges of the two classes it will probably be unnecessary to include vegetation in models for assessing environmental fate. The amount of chemical predicted to partition to vegetation compartments in the model is shown to be highly sensitive to certain model assumptions. Further experimental research is recommended to obtain more reliable equations describing equilibrium partitioning and uptake/depuration kinetics.  相似文献   

18.
The contribution of dry deposition to the total atmospheric input of acidifying compounds and base cations is of overwhelming importance. Throughfall measurements provide an estimate of the total deposition to forest soils, including dry deposition, but some uncertainties, related to the canopy interaction processes, affect this approach. We compared the concentrations and the fluxes of the main ions determined in wet-only, bulk and throughfall samples collected at five forest sites in Italy. The contribution of coarse particles deposited onto the bulk samplers was of prime importance for base cations, representing on average from 16% to 46% of the bulk deposition. The extent of this dry deposition depended on some geographical features of the sites, such as the distance from the sea and the annual rainfall. The possibility of applying specific bulk/wet ratios to estimate the wet deposition proved to be limited by the temporal variability of these ratios, which must be considered together with the spatial variability. A direct comparison of the dry contribution deriving from the bulk–wet and the throughfall–wet demonstrated that an extensive natural surface (forest canopy) performs better than a small synthetic surface (funnel of the bulk sampler) in collecting dry deposition of SO42−, NO3 and Na+. The canopy exchange model was applied to both bulk and wet data to estimate the contribution of dry deposition to the total input of base cations, and the uncertainty associated to the model discussed. The exclusive use of bulk data led to a considerable underestimation of base cation dry deposition, which varies among the study sites.  相似文献   

19.
Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 – 9 May 1996) with the Canadian patent pending.XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine) to 110% for triallate [S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m-2 da-1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m-2 da-1: and, γ-HCH (γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m-2 da-1.  相似文献   

20.
Concurrent measurements of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs) in different size fractions of atmospheric particulate matter are presented for a winter and a summer sampling period. The PCDD/Fs and PAHs were primarily associated with particles of <1.35 μm aerodynamic diameter. The particle size distributions were similar for the compounds within each substance group and, surprisingly, also between the PCDD/Fs and PAHs. Changes in the particle size distribution of particle mass were reflected in the particle size distributions of the PCDD/Fs and PAHs.The data were employed to identify those particle size fractions dominating the wet and dry particle bound deposition of PCDD/Fs and PAHs and, furthermore, to assess the relative contributions of wet and dry deposition to the total particle bound deposition fluxes. The calculations indicate that coarse particles contribute most to the dry deposition while, in contrast, the wet deposition of the PCDD/Fs and PAHs is dominated by fine particles. Furthermore, it is estimated that in Bayreuth wet deposition dominates the total particle bound deposition of PCDD/Fs and PAHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号