首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The potential influence of autochthonous microorganisms on virus fate in soil is usually determined through extreme conditions of sterilization vs. nonsterilization; however, the relative importance of microbial cells and their exudates remains unclear. In this study, bacterial cells (cell) were harvested, and their exuded extracellular polymeric substances (EPS) were extracted from three strains of bacteria, namely, Gram-negative bacteria Pseudomonas putida and Pseudomonas aeruginosa as well as Gram-positive bacterium Bacillus subtilis. This study aimed to evaluate virus removal in solutions in the presence of cell, EPS, and their combination (cell/EPS), as well as to investigate how their presence affects virus removal efficiencies by four red soils based on batch experiments. Results showed that virus removal percentage in solutions ranged from 11 to 23 in the presence of cells only and from 12 to 15 in the presence of EPS only. The removal percentage in the combined cell/EPS treatment can be estimated by summing the results achieved by the cell and EPS treatments, separately. Meanwhile, cell presence had a negligible effect on virus removal by red soils. EPS and combined cell/EPS significantly reduced virus removal by 20 to 69 % and 16 to 50 %, respectively, which indicated that EPS served a dominant function in reducing virus removal. This study clearly demonstrated that the prediction of virus removal by red soils must consider the effect of bacteria, especially those producing large quantities of EPS, which can be responsible for the underestimation of viral load in certain studies.  相似文献   

3.
The role of extracellular polymeric substances (EPS) in Cd adsorption by Bacillus subtilis and Pseudomonas putida was investigated using a combination of batch adsorption experiments, potentiometric titrations, Fourier transform infrared spectroscopy (FTIR). An increased adsorption capacity of Cd was observed for untreated bacteria relative to that for EPS-free bacteria. Surface complexation modeling of titration data showed the similar pKa values of functional groups (carboxyl, phosphate and hydroxyl) between untreated and EPS-free bacteria. However, site concentrations on the untreated bacteria were found to be higher than those on the EPS-free bacteria. FTIR spectra also showed that no significant difference in peak positions was observed between untreated and EPS-free bacteria and carboxyl and phosphate groups were responsible for Cd adsorption on bacterial cells. The information obtained in this study is of fundamental significance for understanding the interaction mechanisms between heavy metals and biofilms in natural environments.  相似文献   

4.
The sorption of Cd and Pb by extracellular polymeric substances (EPS) extracted from activated sludges originated from wastewater treatment plants (WWTPs) or Lab-scale bioreactors was investigated as a function of pH. The study was carried out using a polarographic method in the SMDE (stripping mercury dropping electrode) mode which is suited to determine labile metals in solution containing soluble ligands such as EPS. The results obtained provide evidence of the presence of a pH-sorption/desorption edge for Cd and Pb by EPS. The use of Kurbatov’s model gives information on the mechanisms involved through the determination of “relative complexation constants” (operationally defined) and the number of protons exchanged. The use of this model demonstrates that proton exchange with metals is not the only mechanism involved in metal biosorption by EPS. Other mechanisms such as cation exchange with Ca or Mg, global electric field surrounding the ligand or micro-precipitation of metals could be involved in metal sorption by EPS. The position of the pH-sorption edge curves and the “relative complexation constants” show that Pb displays a greater affinity for EPS than Cd. The studied EPS have large differences regarding binding strength of Cd and Pb. These differences are not correlated with the organic parameters measured to characterize the EPS, however the mineral fraction of the EPS could be involved to a large extent in the sorption of metal.  相似文献   

5.
Elemental mercury (Hg0) is a metal with a number of atypical properties, which has resulted in its use in myriad anthropogenic processes. However, these same properties have also led to severe local subsurface contamination at many places where it has been used. As such, we studied the influence of various parameters on Hg(II) sorption onto pyrite (pH, time, Hg(II) concentration), a potential subsurface reactive barrier. Batch sorption studies revealed that total Hg(II) removal increases with both pH and time. X-ray absorption spectroscopy analysis showed that a transformation in the coordination environment at low pH occurred during aging over 2 weeks, to form an ordered monolayer of monodentate Hg-Cl complexes on pyrite. In column studies packed with pure quartz sand, the transport of Hg(II) was significantly retarded by the presence of a thin pyrite-sand reactive barrier, although dissolved oxygen inhibited Hg(II) sorption onto pyrite in the column.  相似文献   

6.
Extracellular polymeric substances (EPS) were extracted from four anaerobic granular sludges with different procedures to study their involvement in biosorption of metallic elements. EPS extracts are composed of closely associated organic and mineral fractions. The EPS macromolecules (proteins, polysaccharides, humic-like substances, nucleic, and uronic acids) have functional groups potentially available for the binding of metallic elements. The acidic constants of these ionizable groups are: pK a1 (4–5) corresponding to the carboxyl groups; pK a2 (6–7) corresponding to the phosphoric groups; pK a3 (8–10) and pK a4 (≈10) corresponding to the phenolic, hydroxyl, and amino groups. The polarographic study confirms the higher affinity of the EPS to bind to lead than to cadmium. Moreover, the binding of these metallic compounds with the EPS is a mix of several sorption mechanisms including surface complexation, ion exchange, and flocculation. Inorganic elements were found as ions linked to organic molecules or as solid particles. The mineral fraction affects the binding properties of the EPS, as the presence of salts decreases the EPS binding ability. Calcite and apatite particles observed on SEM images of EPS extracts can also sorb metallic elements through ion exchange or surface complexation.  相似文献   

7.
A protocol was developed to extract, fractionate, and quantitatively analyze periphyton extracellular polymeric substances (EPS), which obtains both information on the molecular weight (M r) distribution and protein and polysaccharide content. The EPS were extracted from freshwater periphyton between July and December 2011. Organic carbon (OC) compounds from different EPS extracts were analyzed using liquid chromatography-organic carbon detection–organic nitrogen detection (LC-OCD-OND), and total protein and polysaccharide content were quantified. Four distinct OC fractions, on the basis of M r, were identified in all extracts, corresponding to high M r biopolymers (≥80–4 kDa), degradation products of humic substances (M r not available), low M r acids (10–0.7 kDa), and small amphiphilic/neutral compounds (3–0.5 kDa). Low C/N ratios (4.3?±?0.8) were calculated for the biopolymer fractions, which represented 16–38 % of the measured dissolved organic carbon (DOC), indicating a significant presence of high M r proteins in the EPS. Protein and polysaccharide represented the two major components of EPS and, when combined, accounted for the measured DOC in extracts. Differences in specific OC fractions of EPS extracts over the course of the study could be quantified using this method. This study suggests that LC-OCD-OND is a new valuable tool in EPS characterization of periphyton.  相似文献   

8.
BACKGROUND, AIM, AND SCOPE: Chromium(VI) resistance and its association with extracellular polymeric substance (EPS) concentration in cyanobacteria was investigated. Increased EPS concentration was associated with Cr(VI) resistance. The most resistant isolate, Chroococcus sp. H(4), secreted the most EPS (427 mg/L). MATERIALS AND METHODS: EPS concentration of the two most resistant isolates (Chroococcus sp. H(4) and Synechocystis sp. S(63)) was investigated following exposure to 15 and 35 ppm Cr(VI). The composition of EPS produced by Chroococcus sp. H(4) following exposure to 10 ppm Cr(VI) was analyzed using high-performance liquid chromatography. Control EPS was composed of glucose (99%) and galactronic acid (1%); in the presence of 10 ppm Cr(VI), EPS composition changed to glucose (9%), xylose (75%), rhamnose (14%), and galacturonic acid (2%). RESULTS AND DISCUSSION: Results indicated that (1) exposure to elevated concentrations of Cr(VI) affected the composition of EPS produced by Chroococcus sp. H(4), and (2) there was a correlation between Cr(VI) resistance and EPS concentration in some cyanobacteria.  相似文献   

9.
The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by M?ssbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with these newly determined constants and parameters of the main mineralogical constituents of phyllite and the secondary mineralization phase ferrihydrite. The modeling indicated that uranyl sorption to ferrihydrite clearly dominates uranyl sorption, showing the great importance of secondary iron phases for sorption studies.  相似文献   

10.
The extracellular polymeric substance (EPS) extracted from waste activated sludge (WAS) after short-time aerobic digestion was investigated to be used as a novel biosorbent for Cu2+ removal from water. The EPS consisted of protein (52.6 %, w/w), polysaccharide (30.7 %, w/w), and nucleic acid (16.7 %, w/w). Short-time aerobic digestion process of WAS for about 4 h promoted the productivity growth of the EPS for about 10 %. With a molecular weight of about 1.9?×?106 Da, the EPS showed a linear structure with long chains, and contained carboxyl, hydroxyl, and amino groups. The sorption kinetics was well fit for the pseudo-second-order model, and the maximum sorption capacity of the EPS (700.3 mg Cu2+/g EPS) was markedly greater than those of the reported biosorbents. Both Langmuir model and Freundlich model commendably described the sorption isotherm. The Gibbs free energy analysis of the adsorption showed that the sorption process was feasible and spontaneous. According to the complex results of multiple analytical techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy, etc., the adsorption process took place via both physical and chemical sorption, but the electrostatic interaction between sorption sites with the functional groups and Cu2+ is the major mechanism.  相似文献   

11.
Murphy V  Hughes H  McLoughlin P 《Chemosphere》2008,70(6):1128-1134
Dried biomass of the macroalgae Fucus vesiculosus and Fucus spiralis (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their chromium biosorption performance. Metal sorption was highly pH dependent with maximum Cr(III) and Cr(VI) sorption occurring at pH 4.5 and pH 2, respectively. Extended equilibrium times were required for Cr(VI) binding over Cr(III) binding (180 and 120min, respectively) thus indicating possible disparities in binding mechanism between chromium oxidation states. The red seaweed P. palmata revealed the highest removal efficiency for both Cr(III) and Cr(VI) at low initial concentrations. However, at high initial metal concentrations F. vesiculosus had the greatest removal efficiency for Cr(III) and performed almost identically to P. lanosa in terms of Cr(VI) removal. The Langmuir Isotherm mathematically described chromium binding to the seaweeds where F. vesiculosus had the largest q(max) for Cr(III) sorption (1.21mmol g(-1)) and P. lanosa had the largest Cr(VI) uptake (0.88mmol g(-1)). P. palmata had the highest affinity for both Cr(III) and Cr(VI) binding with b values of 4.94mM(-1) and 8.64mM(-1), respectively. Fourier transform infrared analysis revealed interactions of amino, carboxyl, sulphonate and hydroxyl groups in chromium binding to Ulva spp. The remaining seaweeds showed involvement of these groups to varying degrees as well as ether group participation in the brown seaweeds and for Cr(VI) binding to the red seaweeds.  相似文献   

12.
The interactions between metals (Ca2+ and Hg2+) and extracellular polymeric substances (EPS) extracted from the aerobic and anaerobic sludge in wastewater treatment reactors were investigated using a combination of zeta potential measurement and 3-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy with parallel factor (PARAFAC) analysis. Results show that Ca2+ had no substantial effects on the EEM fluorescence spectra of the EPS, but their zeta potentials increased with the increasing Ca2+ dosage. However, Hg2+ had a significant effect on the EEM fluorescence spectra of the EPS, while their zeta potentials seemed not to be affected by the dose of Hg2+. The interactions between Hg2+ and EPS were elucidated using the fluorescence quenching with PARAFAC analysis, while the interactions between Ca2+ and EPS were evaluated by the zeta potential technique. The binding constants for Hg2+ and EPS were two orders of magnitude higher than those for Ca2+ and EPS, suggesting that the binding mechanisms between Ca2+ and EPS were different from those between Hg2+ and EPS. The results might be useful for understanding the roles of EPS in bacterial self-protection against heavy metals and the aggregate formation mechanisms through ionic bridging interactions.  相似文献   

13.
Qian Y  Posch T  Schmidt TC 《Chemosphere》2011,82(6):859-865
Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal’s forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.  相似文献   

14.
15.
Anthropogenic activity constantly releases heavy metals into the environment. The heavy metal chromium has a wide industrial use and exists in two stable oxidation states: trivalent and hexavalent. While hexavalent chromium uptake in plant cells has been reported that an active process by carrying essential anions, the cation Cr(III) appears to be taken up inactively. Dictyosphaerium chlorelloides (Dc1M), an unicellular green alga is a well-studied cell biological model organism. The present study was carried out to investigate the toxic effect of chromium exposures on wild-type Cr(III)-sensitive (Dc1Mwt) and Cr(III)-tolerant (Dc1MCr(III)R30) strains of these green algae, and to determine the potential mechanism of chromium resistance. Using cell growth as endpoint to determine Cr(III)-sensitivity, the IC50(72) values obtained show significant differences of sensitivity between wild type and Cr(III)-tolerant cells. Scanning electron microscopy (SEM) showed significant morphological differences between both strains, such as decrease in cell size or reducing the coefficient of form; and transmission electron microscopy (TEM) revealed ultrastructural changes such as increased vacuolization and cell wall thickening in the Cr(III)-tolerant strain with respect to the wild-type strain. Energy dispersive X-ray analysis (SEM/XEDS) revealed that Cr(III)-tolerant D. chlorelloides cells are able to accumulate considerable amounts of chromium distributed in cell wall (bioadsorption) as well as in cytoplasm, vacuoles, and chloroplast (bio-accumulation). Morphological changes of Cr(III)-tolerant D. chlorelloides cells and the presence of these electron-dense bodies in their cell structures can be understood as a Cr(III) detoxification mechanism.  相似文献   

16.
Chojnacka K 《Chemosphere》2005,59(3):315-320
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.  相似文献   

17.
Zhou H  He Y  Lan Y  Mao J  Chen S 《Chemosphere》2008,72(6):870-874
The removal of Cr(VI) by zero-valent iron (Fe(0)) and the effect of three complex reagents, ethylenediaminetetraacetic acid (EDTA), NaF and 1,10-phenanthroline, on this reaction were investigated using batch reactors at pH values of 4, 5 and 6. The results indicate that the removal of Cr(VI) by Fe(0) is slow at pH 5.0 and that three complex reagents play different roles in the reaction. EDTA and NaF significantly enhance the reaction rate. The zero-order rate constants at pH 5.0 were 5.44 microM min(-1) in the presence of 4mM EDTA and 0.99 micrM min(-1) in the presence of 8 mM NaF, respectively, whereas that of control was only 0.33 micrM min(-1), even at pH=4.0. This enhancement is attributed to the formation of complex compounds between EDTA/NaF and reaction products, such as Cr(III) and Fe(III), which eliminate the precipitates of Cr(III), Fe(III) hydroxides and Cr(x)Fe(1-)(x)(OH)(3) and thus reduce surface passivation of Fe(0). In contrast, 1,10-phenanthroline, a complex reagent for Fe(II), dramatically decreases Cr(VI) reduction by Fe(0). At pH=4.0, the zero-order rate constant in the presence of 1mM of 1,10-phenanthroline was 0.02 micrM min(-1), decreasing by 99.7% and 93.9%, respectively, compared with the results in the presence and absence of EDTA. The results suggest that a pathway of the reduction of Cr(VI) to Cr(III) by Fe(0) may involve dissolution of Fe(0) to produce Fe(II), followed by reduction of Cr(VI) by Fe(II), rather than the direct reaction between Cr(VI) and Fe(0), in which Fe(0) transfers electrons to Cr(VI).  相似文献   

18.
Geochemical processes leading to either mobilization or retention of radionuclides in an aquifer system are significantly influenced by their interaction with rock, sediment and colloid surfaces. Therefore, a sound safety assessment of nuclear waste disposal requires the elucidation and quantification of those processes. State-of-the-art analytical techniques as e.g. laser- and X-ray spectroscopy are increasingly applied to study solid–liquid interface reactions to obtain molecular level speciation insight.We have studied the sorption of trivalent lanthanides and actinides onto aluminium oxides, hydroxides and purified clay minerals by the time-resolved laser fluorescence spectroscopy and X-ray-absorption spectroscopy. Chemical constitution and structure of surface bound actinides are proposed based on spectroscopic information. Open questions still remain with regard to the exact nature of mineral surface ligands and the mineral/water interface. Similarities of spectroscopic data obtained for M(III) sorbed onto γ-alumina, and clay minerals suggest the formation of very comparable inner-sphere surface complexes such as S–O–An(III)(OH)x(2 − x)(H2O)5 − x at pH > 5. Those speciation data are found consistent with those predicted by surface complexation modelling. The applicability of data obtained for pure mineral phases to actinide sorption onto heterogeneously composed natural clay rock is examined by experiments and by geochemical modelling. Good agreement of experiment and model calculations is found for U(VI) and trivalent actinide/lanthanide sorption to natural clay rock. The agreement of spectroscopy, geochemical modelling and batch experiments with natural rock samples and purified minerals increases the reliability in model predictions.The assessment of colloid borne actinide migration observed in various laboratory and field studies calls for detailed information on actinide–colloid interaction. Kinetic stabilization of colloid bound actinides can be due to inclusion into inorganic colloid matrix or by macromolecular rearrangement in case of organic, humic/fulvic like colloids. Only a combination of spectroscopy, microscopy and classical batch sorption experiments can help to elucidate the actinide–colloid interaction mechanisms and thus contribute to the assessment of colloids for radionuclide migration.  相似文献   

19.
The mechanism of accumulation of copper(II) by Pseudomonas aeruginosa was investigated. Uptake consisted of a rapid process (likely to be extracellular binding) followed by a slow phase (possibly cellular uptake). The sorption capacity of the microbe was found to be 50 mg/g, and sorption followed the Langmuir isotherm. The presence of mild mineral acids (0.1 N HCl) led to destructive desorption of 95% of sorbed metal, whereas citrate buffer (pH 4) desorbed 80% of the accumulated metal ions non-destructively. Spectroscopic and microscopic studies indicated the accumulation of metal inside the cell, though the maximum uptake was by the cell wall.  相似文献   

20.
Sorption of 137Cs, 90Sr, 154Eu and 141Ce by magnetite has been studied at varying pH (4 to 11) in the presence and absence of humic acid. The sorption studies have also been carried out at varying ionic strength (0.01 to 0.2 M NaClO4) and humic acid concentration (2 to 20 mg/L). Percentage sorption of 137Cs and 90Sr was found to be pH dependent, with the sorption increasing with increasing pH of the suspension. At any pH, the percentage sorption of 90Sr was higher than that of 137Cs. The results have been explained in terms of the electrostatic interaction between the positively charged metal ions and the surface charge of the magnetite which becomes increasingly negative with increasing pH. On the other hand, 154Eu and 141Ce were found to be strongly sorbed by the magnetite at all pH values, with the sorption being independent of pH. The strong sorption of trivalent and tetravalent metal ions suggests the role of complexation reactions during sorption, apart from the electrostatic interactions. However, in the case of 141Ce surface precipitation of Ce(III) formed by reduction of Ce(IV) in the presence of magnetite cannot be ruled out. Presence of humic acid (2 mg/L) was found to have negligible effect on sorption of all metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号