首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
Hasan SA  Hayat S  Ahmad A 《Chemosphere》2011,84(10):1446-1451
The present study was conducted with an aim to gain better insight of brassinosteroid generated response on the effects of cadmium on photosynthetic machinery and active oxygen metabolism in two tomato cultivars (K-25 and Sarvodya). These tomato cultivars were subjected to graded cadmium levels in soil (0, 3, 6, 9 or 12 mg kg−1 soil) with their foliage being sprayed with 0 or 10−8 M of 28-homobrassinolide/24-epibrassinolide (HBL/EBL) at 59 d stage. The results suggested that photosynthetic parameters, leaf water potential and activity of several enzymes (nitrate reductase and carbonic anhydrase) decreased significantly in both the cultivars, to a lesser extent in K-25 than Sarvodya with the increasing levels of cadmium in the soil. However, the activity of antioxidant enzymes and proline content increased in response to metal treatment as well as the application of brassinosteroids (HBL/EBL). Overall, exogenous application of brassinosteroids improved the activity of photosynthetic machinery and that of antioxidant defense system in both the cultivars, and also nullified the damaging effect of metal on these parameters.  相似文献   

2.
The role of exogenous spermine (0.25 mM Spm, a type of polyamine (PA) in reducing Cd uptake and alleviating Cd toxicity (containing 1 and 1.5 mM CdCl2 in the growing media) effects was studied in the mung bean (Vigna radiata L. cv. BARI Mung-2) plant. Exogenously applied Spm reduced Cd content, accumulation, and translocation in different plant parts. Increasing phytochelatin content, exogenous Spm reduced Cd accumulation and translocation. Spm application reduced the Cd-induced oxidative damage which was reflected from the reduction of H2O2 content, O2 ?– generation rate, lipoxygenase (LOX) activity, and lipid peroxidation level and also reflected from the reduction of spots of H2O2 and O2 ?– from mung bean leaves (compared to control treatment). Spm pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, and glutathione, GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) which reduced oxidative stress. The cytotoxicity of methylglyoxal (MG) is also reduced by exogenous Spm because it enhanced glyoxalase system enzymes and components. Through osmoregulation, Spm maintained a better water status of Cd-affected mung bean seedlings. Spm prevented the chl damage and increased its content. Exogenous Spm also modulated the endogenous free PAs level which might have the roles in improving physiological processes including antioxidant capacity, osmoregulation, and Cd and MG detoxification capacity. The overall Spm-induced tolerance of mung bean seedlings to Cd toxicity was reflected through improved growth of mung bean seedlings.  相似文献   

3.
4.
Yu ZY  Zhang J  Yin DQ 《Chemosphere》2012,87(11):1361-1367
Copper pollutions are typical heavy metal contaminations, and their ability to move up food chains urges comprehensive studies on their effects through various pathways. Currently, four exposure pathways were prescribed as food-borne (FB), water-borne plus clean food (WCB), water-food-borne (WFB) and water-borne (WB). Caenorhabditiselegans was chosen as the model organism, and growth statuses, feeding abilities, the amounts of four antioxidant enzymes, and corresponding recovery effects under non-toxic conditions with food and without food were investigated. Based on analysis results, copper concentrations in exposure were significantly influenced by the presence of food and its uptake by C.elegans. Both exposure and recovery effects depended on exposure concentrations and food conditions. For exposure pathways with food, feeding abilities and growth statuses were generally WFB < WCB ? FB (p < 0.05). The antioxidant activities were up-regulated in the same order. Meanwhile, the exposure pathway without food (WB) caused non-up-regulated antioxidant activities, and had the best growth statuses. For recoveries with food, growth statuses, feeding abilities and the inductions of the antioxidant enzymes were all WB ≈ WFB < WCB < FB (p < 0.05). For recoveries without food, the order of growth statuses remained WB > FB > WCB > WFB (p < 0.05), while the antioxidant activities were all inhibited in a concentration-dependent fashion. In conclusion, contaminated food was the primary exposure pathway, and various pathways caused different responses of C.elegans.  相似文献   

5.
6.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   

7.
Wang C  Zhang S  Wang P  Hou J  Qian J  Ao Y  Lu J  Li L 《Chemosphere》2011,84(1):136-142
In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4 d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a + b) and increased malondialdehyde and O2− and H2O2 content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA + 50 μM Pb or 100 μM SA + 50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O2− and H2O2 content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.  相似文献   

8.
Sesuvium portulacastrum (L.) L., a facultative halophyte, is considered a suitable candidate for the phytoremediation of metals. An investigation of As accumulation and tolerance was conducted in Sesuvium plants upon exposure to As(V) (100-1000 μM) for 30 d. Plants demonstrated a good growth even after prolonged exposure (30 d) to high As(V) concentrations (1000 μM) and a significant As accumulation (155 μg g−1 dry weight) with a bioaccumulation factor of more than ten at each concentration. The results of shoot and root dry weight, malondialdehyde accumulation, photosynthetic pigments, and total soluble proteins demonstrated that plants did not experience significant toxicity even at 1000 μM As(V) after 30 d. However, metabolites (total non-protein thiols and cysteine) and enzymes (serine acetyltransferase, cysteine synthase and γ-glutamylcysteine synthetase) of thiol metabolism, in general, remained either unaffected or showed slight decline. Hence, plants tolerated high As(V) concentrations without an involvement of thiol metabolism as a major component. Taken together, the results indicate that plants are potential As accumulator and may find application in the re-vegetation of As contaminated sites.  相似文献   

9.
We tested the effects of the herbicide metsulfuron-methyl on growth of the submerged macrophyte Myriophyllum spicatum under laboratory conditions using different exposure scenarios. The exposures of each scenario were comparable in the concentration × time factor, viz., the same 21-d time-weighted average (TWA) concentrations but variable in peak exposure concentrations (ranging from 0.1 to 21 000 ng ai L−1) and exposure periods (1, 3, 7, 14 or 21 d). To study recovery potential of the exposed M. spicatum plants we continued the observation on shoot and root growth for another 21 d in herbicide-free medium so that the total observation period was 42 d. Non-destructive endpoints, length and number of new shoots and roots, were determined weekly from day 14 onwards. Destructive endpoints, dry-weight (DW) of main shoots, new shoots and new roots, were measured at the end of the experiment (t = 42 d).Metsulfuron-methyl exposure in particular inhibited new tissue formation but was not lethal to main shoots. On days 21 and 42 after start exposure, EC10/EC50 values for new tissues expressed in terms of peak concentration (=measured concentration during exposure periods of different length) showed large differences between exposure scenarios in contrast to EC10/EC50 values for days 21 and 42 expressed in terms of 21-d and 42-d TWA concentrations, respectively. At the end of the experiment (day 42), 42-d TWA ECx values were remarkably similar between exposure scenarios, while a similar trend could already be observed on day 21 for 21-d TWA ECx values. For the macrophyte M. spicatum and exposure to the herbicide metsulfuron-methyl the TWA approach seems to be appropriate to use in the risk assessment. However, the data from the toxicity experiment suggest that on day 21 also the absolute height of the pulse exposure played a (minor) role in the exposure - response relationships observed.  相似文献   

10.
Alkylphenol ethoxylates are widely used as detergents, emulsifiers, solubilizers, wetting agents and dispersants. Octylphenol (OP) ethoxylates, one of alkylphenol ethoxylates, represent 15–20% of the market, and their metabolic residues may be discharged to surface waters, sediments and soils as a persistent and ubiquitous pollutant. We tested the response of Arabidopsis thaliana to different concentrations of OP. OP affected the germination percentage and mean germination period. 10 d treatment with OP, especially high concentration (10 and 50 mg L−1), decreased shoot and root biomass and root length of 30 d-old A. thaliana. Content of chlorophyll was decreased but that of proline was increased in leaves with OP treatment. OP caused oxidative stress in leaves; malondialdehyde content was increased, and the activities of ascorbate peroxidase, catalase and superoxide dismutase were induced. OP affects the physiologic and morphologic features of A. thaliana during growth. Because plants might be exposed to OP for a long time in the surroundings, more attention needs to be paid to the effect of OP on plants.  相似文献   

11.
Several treatment technologies are available for the treatment of palm oil mill wastes. Vermicomposting is widely recognized as efficient, eco-friendly methods for converting organic waste materials to valuable products. This study evaluates the effect of different vermicompost extracts obtained from palm oil mill effluent (POME) and palm-pressed fiber (PPF) mixtures on the germination, growth, relative toxicity, and photosynthetic pigments of mung beans (Vigna radiata) plant. POME contains valuable nutrients and can be used as a liquid fertilizer for fertigation. Mung bean seeds were sown in petri dishes irrigated with different dilutions of vermicomposted POME-PPF extracts, namely 50, 60, and 70% at varying dilutions. Results showed that at lower dilutions, the vermicompost extracts showed favorable effects on seed germination, seedling growth, and total chlorophyll content in mung bean seedlings, but at higher dilutions, they showed inhibitory effects. The carotenoid contents also decreased with increased dilutions of POME-PPF. This study recommends that the extracts could serve as a good source of fertilizer for the germination and growth enhancement of mung bean seedlings at the recommended dilutions.  相似文献   

12.
Cadmium (Cd) toxicity in plants leads to serious disturbances of physiological processes, such as inhibition of chlorophyll synthesis, oxidative injury to the plant cells and water and nutrient uptake. Response of Matricaria chamomilla L. to calcium chloride (CaCl2) enrichment in growth medium for reducing Cd toxicity were studied in this study. Hydroponically cultured seedlings were treated with 0, 0.1, 1, and 5 mM CaCl2, under 0, 120, and 180 μM CdCl2 conditions, respectively. The study included measurements pertaining to physiological attributes such as growth parameters, Cd concentration and translocation, oxidative stress, and accumulation of phenolics. Addition of CaCl2 to growth media decreased the Cd concentration, activity of antioxidant enzymes, and reactive oxygen species accumulation in the plants treated with different CdCl2, but increased the growth parameters. Malondialdehyde and total phenolics in shoots and roots were not much affected when plants were treated only with different CaCl2 levels, but it showed a rapid increase when the plants were exposed to 120 and 180 CdCl2 levels. CaCl2 amendment also ameliorated the CdCl2-induced stress by reducing oxidative injury. The beneficial effects of CaCl2 in ameliorating CdCl2 toxicity can be attributed to the Ca-induced reduction of Cd concentration, by reducing the cell-surface negativity and competing for Cd2+ ion influx, activity enhancement of antioxidant enzymes, and biomass accumulation.  相似文献   

13.
The maximum specific growth rates of both ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were investigated under varying aerobic solids retention time (SRTa) and in the presence/absence of anoxic (alternating) conditions. Two bench SBRs, reactor R1 and R2, were run in parallel for 150 d. Reactor R1 was operated in aerobic conditions while R2 operated in alternating anoxic/aerobic conditions. The feed (synthetic wastewater), temperature, hydraulic retention time and mixing were identical in both reactors. The SRTa in both reactors was, sequentially, set at four values: 5, 4, 3 and 2 d.Kinetic tests with the biomasses from both reactors were carried out to estimate the maximum specific growth rates (μmax) at each tested SRTa and decay rates, in both aerobic and anoxic conditions. The kinetic parameters of nitrifier were estimated through the calibration of a two step nitrification-denitrification activated sludge model.The results point to a slightly higher μmax,AOB and μmax,NOB in alternating conditions, while both μmax,AOB and μmax,NOB were shown not to vary in the tested range of SRTa (from 2 to 5 d) at 20 °C. They were relatively high when compared to literature data: 1.05 d−1 < μmax,AOB < 1.4 d−1 and 0.91 d−1 < μmax,NOB < 1.31 d−1. The decay coefficients of both AOB and NOB were much higher in aerobic (from 0.22 d−1 to 0.28 d−1) than in anoxic (0.04 d−1 to 0.16 d−1) conditions both in R1 and R2, which explained the higher nitrification rates observed in the alternating reactor.  相似文献   

14.
A pot experiment was conducted to investigate the dynamic changes in the rhizosphere properties and antioxidant enzyme responses of wheat plants (Triticum aestivum L.) grown in three levels of Hg-contaminated soils. The concentrations of soluble Hg and dissolved organic carbon (DOC) in the rhizosphere soil solutions of the wheat plants were characterised by the sequence before sowing > trefoil stage > stooling stage, whereas the soil solution pH was found to follow an opposite distribution pattern. The activities of antioxidant enzymes in wheat plants under Hg stress were substantially altered. Greater superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities were observed in the wheat plants grown in a highly polluted soil than in a slightly polluted soil (with increases of 11–27% at the trefoil stage and 26–70% at the stooling stage); however, increasing concentrations of Hg up to seriously polluted level led to reduced enzyme activities. The present results suggest that wheat plants could positively adapt to environmental Hg stress, with rhizosphere acidification, the enhancement of DOC production and greater antioxidant enzyme activities perhaps being three important mechanisms involved in the metal uptake/tolerance in the rhizospheres of wheat plants grown in Hg-contaminated soils.  相似文献   

15.
Glyphosate use has increased over the last decades for the control of invasive plant species in wetland ecosystems. Although glyphosate has been considered ‘environmentally’ safe, its repeated use could increase the toxicological risk derived from diffuse pollution of surface and groundwater on non-target vegetation. A glasshouse study was designed to determine the effect produced by the addition of different sub-lethal doses of glyphosate herbicides (5–30 mg L−1) to the nutrient solution on the growth and photosynthetic apparatus of Bolboschoenus maritimus. Although B. maritimus plants were able to grow and survive after 20 d of exposure to glyphosate, the presence of this herbicide affected their growth, through a direct interaction with the root system. Particularly, at 30 mg L−1 glyphosate, B. maritimus showed ca. 30% of biomass decrease. The reduction in B. maritimus growth was due to a decrease in net photosynthetic rate (A), which ranged between values ca. 11.5 and 5.5 μmol m−2 s−1 CO2 for the control and the highest glyphosate treatment, respectively. The response of A to glyphosate could be largely accounted for by non-stomatal limitations, since stomatal conductance was similar in all glyphosate treatments. Thus, A decrease was prompted by the negative impact of herbicide on photochemical (PSII) apparatus, the reduction in the absorption of essential nutrients, the reduction of photosynthetic pigments and possibly the reduction in Rubisco carboxilation capacity. Moreover, glyphosate excess caused photoinhibitory damage. In conclusion, in this study we have shown that herbicide water pollution could be a source of indirect phytotoxicity for B. maritimus.  相似文献   

16.
Separate 77-d fish feeding studies were conducted on the cyclic volatile methylsiloxane (cVMS) chemicals octamethylcyclotetrasiloxane and decamethylcyclopentasiloxane with the rainbow trout, Oncorhynchus mykiss, with the determination of biomagnification factor (BMF) and lipid-adjusted BMF (BMF(L)) values as the final experimental metrics. The studies used fish food concentrations of ∼500 μg g−1 for exposure periods of 35 d, followed by a depuration period of 42 d with clean food. The fish tissue concentrations of D4 and D5 achieved empirical steady-state by day 21 in each study. By day 7 of exposure, total 14C activity of both compounds had moved from the fish gastrointestinal (GI) tract into surrounding tissue. An absence of significant fish growth during the initial depuration phase allowed for measurement of empirical depuration rate constants (k2) independent of growth dilution for D4 and D5 of 0.035 and 0.040 d−1, respectively, corresponding to elimination half-lives of approximately 20 d. These rate constants indicated that ∼70–75% of steady-state was achieved during exposure in both studies, resulting in empirical steady-state BMF and BMF(L) values of 0.28 and 0.66 for D4, respectively, and 0.32 and 0.85 for D5, respectively. Kinetic modeling using simple first-order uptake and depuration dynamics produced good agreement with experimental data, with D4 and D5 assimilation efficiencies of 40% and 44%, respectively. Growth-corrected depuration rate constants modeled over the entire study data set indicated slower elimination kinetics for D4 (k2 of 0.007 d−1 or half-life of 100 d) compared to D5 (k2 of 0.010 d−1 or elimination half-life of 69 d). Kinetic BMFk values (i.e., k1/k2) for D4 and D5 were 1.7 and 1.3, respectively, with lipid-adjusted BMFk(L) values of 4.0 and 3.4, respectively.  相似文献   

17.
This study aims to investigate the effects of UV-C irradiation on photosynthetic processes of Microcystis aeruginosa to unravel the mechanism(s) involved in how and in what ways UV-C mediates growth suppression and cellular recovery. Changes in the concentration of photosynthetic pigments, photochemical efficiency, PS II core protein (D1) content, and the coding genes expressions were measured. The results indicate that UV-C doses at 20–200 mJ cm−2 lead to rapid reduction in gene expression of both psbA (for D1) and cpc (for phycocyanin), but the suppression was short term and recoverable within 3 d of post-UV incubation. Conversely, UV-C doses at ?50 mJ cm−2 could induce marked decline in photochemical efficiency (represented by the optimal PS II quantum yield, FV/FM, and the effective PS II quantum yield, Y) as well as decreases in D1 content and water soluble pigments (phycoerythrins, phycocyanins, allophycocyanins) in M. aeruginosa during the post UV-C incubation period. The results suggest that interruption of both the light energy harvesting apparatus (especially the water soluble pigments) and the photochemical process mainly accounted for the growth suppression effect in UV-C irradiated M. aeruginosa.  相似文献   

18.
Stomatal closure and biosynthesis of antioxidant molecules are two fundamental components of the physiological machinery that lead to stress adaptation during plant's exposure to salinity. Since high stomatal resistance may also contribute in counteracting O3 damages, we hypothesized that soil salinization may increase O3 tolerance of crops. An experiment was performed with alfalfa grown in filtered (AOT40 = 0 in both years) and non-filtered (AOT40 = 9.7 in 2005 and 6.9 ppm h in 2006) open-top chambers. Alfalfa yield was reduced by O3 (−33%) only in plants irrigated with salt-free water, while the increasing levels of soil salinity until 1.06 dS m−1 reduced both stomatal conductance and plant O3 uptake, thus linearly reducing O3 effects on yield. Therefore a reliable flux-based model for assessing the effects of O3 on crop yield should take into account soil salinity.  相似文献   

19.
20.
The protective effect of hydroxytyrosol (HT), a strong antioxidant compound from extra virgin olive oil, against TCDD induced toxicity was investigated in human peripheral blood mononuclear cells (PBMC). PBMC (1 × 106 cells mL−1) were divided into four groups and were incubated in a CO2 incubator (5% CO2) for 12 h with vehicle, TCDD (10 nM), TCDD + HT (10 nM + 100 μM) and HT alone (100 μM) respectively. To clarify the role of HT against TCDD induced cytotoxicity, oxidative stress and the levels of antioxidant enzymes were assessed. Incubation of PBMC with TCDD significantly decreased cell viability, catalase (CAT) and glutathione peroxidase (GPx) and increased the levels of superoxide dismutase (SOD), glutathione reductase (GR) and oxidative stress markers such as lipid peroxidation products (LPO), protein carbonyl content (PCC) and reactive oxygen species (ROS). Whereas, HT had an effective antioxidant property as observed by the increased cell viability, normalization of antioxidant enzymes and decreased levels of LPO, PCC and ROS in PBMC co-treated with HT and TCDD. Apoptosis detection and comet assay results shows that HT, by acting as an antioxidant, prevents the damage to DNA induced by TCDD. In addition light microscopic and histopathological observations revealed that the cells are apoptotic and degenerated during TCDD treatment, whereas cells showed intact morphology during co-treatment with HT. On the whole, the results reveal that HT exerts a promising antioxidant potential in protecting the PBMC against TCDD induced oxidative stress, which might be due to the presence of catechol moiety in its structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号