首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. ‘Pusa chetki’ seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g−1 FW) and bound (0.545 μg g−1 FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g−1 FW) and bound IAA (2.45-7.78 μg g−1 FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g−1 FW) and bound (12.17 μg g−1 FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g−1 FW) and Cad (9.08 μg g−1 FW) contents were found for 10−9 M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g−1 FW), proline (4.97 mg g−1 FW), glycinebetaine (39.01 μmol mL−1), ascorbic acid (3.17 mg g−1 FW) and phytochelatins (65.69 μmol g−1 FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg−1 protein) and catalase (0.221 U mg−1 protein) and enhanced activities of glutathione reductase (7.14 U mg−1 protein), superoxide dismutase (15.20 U mg−1 protein) and ascorbate peroxidase (4.31 U mg−1 protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone. Reduced MDA (2.55 μmol g−1 FW) and H2O2 (33.24 μmol g−1 FW) contents were recorded for 10−9 M EBL supplemented to Cr (VI) stress over Cr (VI) treatment alone. Enhancement in free radical scavenging potential as indicated by higher values of 1,1-diphenylpicrylhydrazyl, deoxyribose and reducing power activity assays, and increased levels of phenols and soluble sugars also showed significant influence of EBL in alleviating Cr (VI) stress in radish seedlings.  相似文献   

2.
Reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in the stomach prior to absorption is a well-recognized detoxification process thought to limit the toxicity of ingested Cr(VI). However, administration of high concentrations of Cr(VI) in drinking water cause mouse small intestinal tumors, and quantitative measures of Cr(VI) reduction rate and capacity for rodent stomach contents are needed for interspecies extrapolation using physiologically-based toxicokinetic (PBTK) models. Ex vivo studies using stomach contents of rats and mice were conducted to quantify Cr(VI) reduction rate and capacity for loading rates (1-400 mg Cr(VI) L−1 stomach contents) in the range of recent bioassays. Cr(VI) reduction was measured with speciated isotope dilution mass spectrometry to quantify dynamic Cr(VI) and Cr(III) concentrations in stomach contents at select time points over 1 h. Cr(VI) reduction followed mixed second-order kinetics, dependent upon concentrations of both Cr(VI) and the native reducing agents. Approximately 16 mg Cr(VI)-equivalents of reducing capacity per L of fed stomach contents (containing gastric secretions, saliva, water and food) was found for both species. The second-order rate constants were 0.2 and 0.3 L mg−1 h−1 for mice and rats, respectively. These findings support that, at the doses that caused cancer in the mouse small intestine (?20 mg Cr(VI) L−1 in drinking water), the reducing capacity of stomach contents was likely exceeded. Thus, for extrapolation of target tissue dose in risk assessment, PBTK models are necessary to account for competing kinetic rates including second order capacity-limited reduction of Cr(VI) to Cr(III).  相似文献   

3.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

4.
Wu Q  Qu Y  Li X  Wang D 《Chemosphere》2012,87(11):1281-1287
Here we investigated whether the assay system (10-d) in Caenorhabditis elegans can be used to evaluate chronic toxicity of chromium (Cr(VI)) at environmental relevant concentrations ranging from 5.2 μg L−1 to 260 μg L−1. The results indicated that lethality, locomotion behavior as revealed by head thrash, body bend, and forward turn, metabolism as revealed by pumping rate and mean defecation cycle length, intestinal autofluorescence, and ROS production were severely altered in Cr chronically exposed nematodes at environmental relevant concentrations. The most surprising observations were that head thrash, body bend, intestinal autofluorescence, and ROS production in 13 μg L−1 Cr exposed nematodes were significantly influenced. The observed adverse effects of Cr on survival, locomotion behavior, and metabolism were largely due to forming severe intestinal autofluorescence and ROS production. Therefore, our findings demonstrate the usefulness of chronic toxicity assay system in C. elegans in evaluating the chronic toxicity of toxicants at environmental relevant concentrations.  相似文献   

5.
Cladocerans are able to store energy in the form of macromolecules such as proteins, lipids and carbohydrates. However, their ability to do so depends to a large extent on their physiological and reproductive condition as well as their age. These macromolecules constitute the total caloric reserves of the body and may be modified as a result of environmental stress conditions by either physical or nutritional factors or by exposure to toxic compounds. Neonates of the freshwater cladoceran Daphnia schodleri were exposed to 0.0064, 0.032 and 0.064 mg L−1 of hexavalent chromium - Cr(VI) - up to age 5, 7, 14, 21 or 28 d. Survival and fecundity of parthenogenetic females was evaluated for 28 d (maximum exposure period). Body length and maximum width were determined in specimens of all ages. Caloric content was evaluated in progeny and females within each age group. Female survival was significantly lower with exposure to 0.064 mg L−1 of Cr(VI) than with other treatments, and negative effects on reproduction were observed from the lowest concentration on. Largest adult size was attained by control specimens towards the end of the observation period, but no significant differences in neonate size occurred between concentrations. Energy content decreased in adults as toxicant concentration increased, but these females allocated a larger amount of energy reserves to their progeny as a possible compensation aimed at ensuring neonate survival in an adverse environment due to toxicant presence. Sublethal concentrations of Cr(VI) modified energy content in D. schodleri, affecting to varying degrees its survival, growth and reproduction.  相似文献   

6.
The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L−1; 220 ng L−1; and 10 μg L−1).Cocaine caused significant (p < 0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects.  相似文献   

7.
The effects of increasing Cu, Ni and Cr concentrations (0.5, 5, 10, 20 and 40 mg L−1) on microtubule organization and the viability of leaf cells of the seagrass Cymodocea nodosa for 13 consecutive days were investigated under laboratory conditions. Increased oblique microtubule orientation, microtubule depolymerization at the 5–40 mg L−1 Ni treatments after 3 d of exposure, and a complete microtubule depolymerization at all Ni treatments after 5 d were observed. Cu depolymerised microtubules after three to 7 d of exposure, while Cr caused an extensive microtubule bundling after 9 or 11 d of exposure, depending on metal dosage. Fluorescence intensity measurements further consolidated the above phenomena. Cell death, occurring at later time than microtubule disturbance, was also observed at all Cu and Ni treatments and at the 10–40 mg L−1 Cr treatments and adding to the above quantification of the number of dead cells clearly showed that only a portion of the cell population studied died. The data presented, being the first assessment of microtubule disturbance in seagrasses, indicate that microtubules in seagrass leaf cells could be used as a valuable and early marker of metal-induced stress in biomonitoring programmes.  相似文献   

8.
The aim of the present study is the comparative examination of accumulation and detoxification of Cu and Hg in digestive gland and gills of mussels Mytilus galloprovincialis, using atomic absorption spectrophotometry and autometallography. Mussels were exposed to 0.08 mg L−1 Cu, 0.08 mg L−1 Hg, as well as to a mixture of 0.08 mg L−1 Hg and 0.08 mg L−1 Cu for 11 d. After the experimental exposure, animals were kept under laboratory conditions for a detoxification period of 7 d. An antagonistic effect of Cu against to Hg accumulation was noted in the digestive gland of mussels after the experimental exposure, as well as after the detoxification period, supporting the protective role of Cu against to Hg toxicity in this tissue. Digestive gland was suggested as a main organ for Hg accumulation and gills as a target position for Cu accumulation. Additionally, lower time was evaluated for Hg detoxification in the digestive gland and gills of mussels, in relation to those addressed for Cu detoxification in the same tissues. The evaluation of black silver deposits (BSD) extent performed in digestive gland and gills was suggested as a less sensitive approach, in relation to atomic absorption spectrophotometry (AAS), to indentify the concentration of heavy metals in tissues of mussels. The toxic effects of Hg, Cu and a mixture of them on lysosomal system of the digestive cells are also discussed.  相似文献   

9.
UV filters are increasingly used in sunscreens and other personal care products. Although their residues have been widely identified in aquatic environment, little is known about the influences of UV filters to protozoan. The growth inhibition effects, cell viability and oxidative stress responses of four commonly used UV filters, 2-ethylhexyl 4-methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and octocrylene (OC), to protozoan Tetrahymena thermophila were investigated in this study. The 24-h EC50 values with 95% confidence intervals for BP-3 and 4-MBC were 7.544 (6.561–8.675) mg L−1 and 5.125 (4.874–5.388) mg L−1, respectively. EHMC and OC did not inhibit the growth of T. thermophila after 24 h exposure at the tested concentrations. The results of cell viability assays with propidium iodide (PI) staining were consistent with that of the growth inhibition tests. As for BP-3 and 4-MBC, the relatively higher concentrations, i.e. of 10.0 and 15.0 mg L−1, could lead to the cell membranes impairment after 4 h exposure. With the increase of the exposure time to 6 h, their adverse effects on cell viability of T. thermophila were observed at the relatively lower concentration groups (1.0 mg L−1 and 5.0 mg L−1). In addition, it is noticeable that at environmentally relevant concentration (1.0 μg L−1), BP-3 and 4-MBC could lead to the significant increase of catalase (CAT) activities of the T. thermophila cells. Especially for the BP-3, the oxidative injuries were further confirmed by the reduction of glutathione (GSH) content. It is imperative to further investigate the additive action of UV filters and seek other sensitive endpoint, especially at environmentally relevant concentration.  相似文献   

10.
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg−1 and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg−1 Cr and 1000 mg kg−1 Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.  相似文献   

11.
Zhao X  Zhang B  Liu H  Qu J 《Chemosphere》2011,83(5):726-729
An integrated electro-oxidation and electrocoagulation system was designed and used to remove As(III) and F ions from water simultaneously. Dimensionally stable anodes (DSA), Fe electrodes, and Al electrodes were combined into an electrochemical system. Two pieces of DSA electrodes were assigned as the outside of the Fe and Al electrodes and were directly connected to the power supply as anode and cathode, respectively. The Fe and Al ions were generated by electro-induced process simultaneously. Subsequently, hydroxides of Fe and Al were formed. Arsenic ions are mainly removed by iron hydroxides and F ions are mainly removed by the Al oxides. At the initial concentration of 1.0 mg L−1, most of As(III) was transferred into As(V) within 40 min at current density of 4 mA cm−2, whereas F ions can be efficiently removed simultaneously. The effect of the ratio of Fe and Al plate electrodes and current density on the removal of As(III) and F was investigated. With one piece of Fe plate electrode and three pieces of Al plate electrodes, it is observed that As(III) with concentration of 1 mg L−1 and F with concentration of 4.5 mg L−1 can be removed and their final concentrations were below the values of 10 μg L−1 and 1.0 mg L−1, respectively within 40 min. Removal efficiency of As(III) increases with the increase of solution pH. However, in the pH range of 6-7, removal efficiency of F is the largest.  相似文献   

12.
Kim P  Park Y  Ji K  Seo J  Lee S  Choi K  Kho Y  Park J  Choi K 《Chemosphere》2012,89(1):10-18
Chronic toxicity of acetaminophen and lincomycin were evaluated using freshwater organisms including two crustaceans (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). H295R, a human adrenal cell was also used to understand the effects on steroidogenesis. In 21 d D. magna exposure, survival NOEC was found at 5.72 mg L−1 and no reproduction related effects were noted at this level of exposure to acetaminophen, while 21 d survival or growth effects were not observed even at the highest exposure levels (153 mg L−1) for lincomycin. In the chronic fish toxicity test, significant reduction in juvenile survival was observed at 30 d post-hatch (dph) at 95 mg L−1 of acetaminophen, and 0.42 mg L−1 of lincomycin. After the exposure to both pharmaceuticals, vitellogenin levels tended to increase in male fish at 90 dph. In the eggs which were prenatally exposed to 9.5 mg L−1 of acetaminophen, reduced hatchability was observed. The results of H295R cell assay showed that both pharmaceuticals could alter steroidogenic pathway and increase estrogenicity. Endocrine disruption potentials and their ecological implication may deserve further studies. Our observations suggest however that ecological risks of both pharmaceuticals are negligible at the concentrations currently found in the environment.  相似文献   

13.
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna,Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L−1 concentration range. For the acute endpoints (IC50 and EC50) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L−1 (diclofenac 47-67 mg L−1), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L−1 (gemfibrozil 32-100 mg L−1). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L−1 corresponding to nominal concentrations of 1 and 1000 μg L−1. Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L−1 the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.  相似文献   

14.
The fate and effect of nanomaterials in the environment is of paramount importance towards the technological application of the materials. This work shows the ecotoxicological potential of polyaniline (PANI) nanofibers in the larvae Rhinella arenarum by means of AMPHITOX test. Acute toxicity of PANI nanofibers towards embryos of the common South American toad R. arenarum (Anura: bufonidae) was evaluated in the premetamorphosis (stage 25) larvae. The exposure of R. arenarum larvae to at dose of 150, 250 and 400 mg L−1 resulted in 100% viability within 96 h exposure. The embryos at 2-4 blastomers stage (early life stage teratogenic test) revealed that embryos were not killed and no teratogenic effects were observed when embryos were incubated with PANI nanofibers (150 and 250 mg L−1), while only a growth retardation of embryos was induced at levels of 250 mg PANI nanofibers L−1. On the other hand, at 400 mg L−1 concentration, a reduction in the body length of larvae and tail malformation was observed. This results suggest that a concentration-dependent toxicity is operative, typified by phenotypes that had abnormal body axes. The presence of PANI nanofibers in gut contents and its excretion by larval stages of R. arenarum was confirmed by UV-visible spectroscopy.  相似文献   

15.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

16.
The fertilized eggs of Japanese medaka (Oryzias latipes) were exposed to estrone (E1) at 5–5000 ng L−1 for 15 d, and the hatched fry were exposed continuously to the same concentrations for the additional 15 d. Adverse effects on hatchability, time to hatching, and gross abnormalities occurred at 50 ng L−1 or above. Then the fry were divided into a continual exposure group, and a water recovery group. When the fry were exposed to E1 for another 60 d, there was a decrease in the hepatosomatic index (HSI) of males and the influence disappeared in the water recovery group. The gonadosonatic index (GSI) of females at 500 ng L−1 decreased significantly in another 60 d exposure. While the fry were maintained in dechlorinated tap water for 60 d, a significant decrease in female GSI was observed at 50 ng L−1 or above. An increased GSI was found in males in both continual exposure and water recovery groups at all E1 treatments. Quantitative RT-PCR showed that vitellogenin-I (Vtg-I) gene expressions in the female liver were significantly down-regulated at 50 ng L−1 in the continual exposure group, and at 500 ng L−1 in the water recovery group, while male Vtg-I genes were significantly up-regulated for all E1 treatments. In addition, all E1 treatments caused sex reversal of males. These results suggest that E1 at 5 ng L−1 or above have unrecoverable impacts on the gonadal growth and development of medaka, even if only early life stages were exposed to E1.  相似文献   

17.
CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer-Emmett-Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L−1 soluble copper or by 1.0 mg L−1 CuO-NP that released only 0.16 mg L−1 soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L−1 CuO-NP, but not in the comparable 0.2 mg L−1 soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content.  相似文献   

18.
Chen H  Jiang JG 《Chemosphere》2011,84(5):664-670
Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L−1 trichlorfon or 0.0005 g L−1 dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L−1 trichlorfon or 0.001-0.004 g L−1 dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L−1 trichlorfon or 0.005 g L−1 dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L−1 and 0.032 g L−1. Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo.  相似文献   

19.
The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L−1) and a soil pot trail (control, 60 mg As kg−1). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O2 kg−1 root d.w. d−1), As uptake (e.g., 8.8-151 mg kg−1 in shoots in 0.8 mg As L−1 treatment), translocation factor (2.1-47% in 0.8 mg As L−1) and tolerance (29-106% in 0.8 mg As L−1). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号