首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maximum specific growth rates of both ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) were investigated under varying aerobic solids retention time (SRTa) and in the presence/absence of anoxic (alternating) conditions. Two bench SBRs, reactor R1 and R2, were run in parallel for 150 d. Reactor R1 was operated in aerobic conditions while R2 operated in alternating anoxic/aerobic conditions. The feed (synthetic wastewater), temperature, hydraulic retention time and mixing were identical in both reactors. The SRTa in both reactors was, sequentially, set at four values: 5, 4, 3 and 2 d.Kinetic tests with the biomasses from both reactors were carried out to estimate the maximum specific growth rates (μmax) at each tested SRTa and decay rates, in both aerobic and anoxic conditions. The kinetic parameters of nitrifier were estimated through the calibration of a two step nitrification-denitrification activated sludge model.The results point to a slightly higher μmax,AOB and μmax,NOB in alternating conditions, while both μmax,AOB and μmax,NOB were shown not to vary in the tested range of SRTa (from 2 to 5 d) at 20 °C. They were relatively high when compared to literature data: 1.05 d−1 < μmax,AOB < 1.4 d−1 and 0.91 d−1 < μmax,NOB < 1.31 d−1. The decay coefficients of both AOB and NOB were much higher in aerobic (from 0.22 d−1 to 0.28 d−1) than in anoxic (0.04 d−1 to 0.16 d−1) conditions both in R1 and R2, which explained the higher nitrification rates observed in the alternating reactor.  相似文献   

2.
Wu CY  Peng YZ  Wang RD  Zhou YX 《Chemosphere》2012,86(8):767-773
The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30 d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L−1 during the operation.  相似文献   

3.
The aim of the present work was to determine the denitrification potential of aerobic granular sludge for concentrated nitrate wastes. We cultivated mixed microbial granules in a sequencing batch reactor operated at a superficial air velocity of 0.8 cm s−1. The denitrification experiments were performed under anoxic conditions using serum bottles containing synthetic media with 225-2250 mg L−1 NO3-N. Time required for complete denitrification varied with the initial nitrate concentration and acetate to nitrate-N mass ratio. Complete denitrification of 2250 mg L−1 NO3-N under anoxic conditions was accomplished in 120 h. Nitrite accumulation was not significant (<5 mg N L−1) at initial NO3-N concentrations below 677 mg L−1. However, denitrification of higher concentrations of nitrate (?900 mg N L−1) resulted in buildup of nitrite. Nevertheless, nitrite buildups observed in present study were relatively lower compared to that reported in previous studies using flocculent activated sludge. The experimental results suggest that acetate-fed aerobic granular sludge can be quickly adapted to treat high strength nitrate waste and can thus be used as seed biomass for developing high-rate bioreactors for efficient treatment of concentrated nitrate-bearing wastes.  相似文献   

4.
Lürling M 《Chemosphere》2011,82(3):411-417
Active growth is a prerequisite for the formation of grazing-protective, mostly eight-celled colonies by the ubiquitous green alga Scenedesmus in response to chemical cues from zooplankton. Colonies can also be evoked by chemically quite similar manmade anionic surfactants, such as FFD-6. In this study, it was hypothesized that growth-inhibiting concentrations of the herbicide metribuzin impair the ability of Scenedesmus obliquus to form colonies in response to the surfactant morphogen FFD-6. The results confirmed that the formation of colonies in S. obliquus was hampered by metribuzin. EC50 values of metribuzin for colony inhibition (approximately 11 μg L−1) were similar to those for growth and photosynthesis inhibition (12-25 μg metribuzin L−1). In the absence of the colony-inducing surfactant FFD-6, S. obliquus populations were comprised of 92% unicells, having on average 1.2 cells per colony at all tested metribuzin concentrations (0-100 μg L−1). In contrast, in the presence of FFD-6 and at low metribuzin concentrations (0 and 5 μg L−1), S. obliquus had more than five cells per colony with a high portion of eight-celled colonies. However, increasing concentrations of metribuzin decreased the number of colonies in the FFD-6-exposed populations and caused them to remain mostly unicellular at the highest concentrations (50 and 100 μg L−1). This study revealed that metribuzin impeded growth and by doing so, also obstructed the possibility for unicellular Scenedesmus to form colonies. Consequently, an increase in mortality of Scenedesmus from grazing is expected.  相似文献   

5.
Ng TY  Pais NM  Dhaliwal T  Wood CM 《Chemosphere》2012,87(11):1208-1214
We tested the use of whole-body and subcellular Cu residues (biologically-active (BAM) and inactive compartments (BIM)), of the oligochaete Lumbriculus variegatus to predict Cu toxicity in fresh water. The critical whole-body residue associated with 50% mortality (CBR50) was constant (38.2-55.6 μg g−1 fresh wt.) across water hardness (38-117 mg L−1 as CaCO3) and exposure times during the chronic exposure. The critical subcellular residue (CSR50) in metal-rich granules (part of BIM) associated with 50% mortality was approximately 5 μg g−1 fresh wt., indicating that Cu bioavailability is correlated with toxicity:subcellular residue is a better predictor of Cu toxicity than whole-body residue. There was a strong correlation between the whole-body residue of L. variegatus (biomonitor) and survival of Chironomus riparius (relatively sensitive species) in a hard water Cu co-exposure. The CBR50 in L. variegatus for predicting mortality of C. riparius was 29.1-45.7 μg g−1 fresh wt., which was consistent within the experimental period; therefore use of Cu residue in an accumulator species to predict bioavailability of Cu to a sensitive species is a promising approach.  相似文献   

6.
Soil washing is a potential technology for rapid removal of organic hydrocarbons sorbed to soils. In this work, p-cresol desorption with different non-ionic surfactants (Tween 80, Brij 30 and Triton X-100) was compared to cyclodextrine and citrate as solubilizer. A series of batch extraction experiments were conducted at 20 °C using the field soil with different extracting solutions at various concentrations to investigate the removal efficiency and to optimize the concentration of the extractant. The use of the different extracting agents was very selective to p-cresol extraction, minimizing soil organic matter releasing and maintaining the natural pH of the soil. The highest asymptotic values of desorption percentages were obtained for Tween 80 and Brij 30 at 48 h. However, Brij 30 ecotoxicity (EC50 = 0.5 mg L−1) is in the same order of that obtained for p-cresol, being this surfactant clearly ruled out. Liquid to solid ratio of 2.5 mL g−1 presented the best extraction results, while concentrations higher than 1 g L−1 for Tween 80 and Citrate did not produce any significant effect on the desorption efficiency. p-Cresol extraction efficiencies higher than 70% and 60% for Tween 80 and Citrate, respectively.  相似文献   

7.
Diester phthalates are industrial chemicals used primarily as plasticizers to import flexibility to polyvinylchloride plastics. In this study, we examined the hydrolysis of di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in human liver microsomes. These diester phthalates were hydrolyzed to monoester phthalates (mono-n-butyl phthalate (MBP) from DBP, mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP) from BBzP, and mono(2-ethylhexyl) phthalate (MEHP)) by human liver microsomes. DBP, BBzP and DEHP hydrolysis showed sigmoidal kinetics in V-[S] plots, and the Hill coefficient (n) ranged 1.37-1.96. The S50, Vmax and CLmax values for DBP hydrolysis to MBP were 99.7 μM, 17.2 nmol min−1 mg−1 protein and 85.6 μL min−1 mg−1 protein, respectively. In BBzP hydrolysis, the values of S50 (71.7 μM), Vmax (13.0 nmol min−1 mg−1 protein) and CLmax (91.3 μL min−1 mg−1 protein) for MBzP formation were comparable to those of DBP hydrolysis. Although the S50 value for MBP formation was comparable to that of MBzP formation, the Vmax and CLmax values were markedly lower (<3%) than those for MBzP formation. The S50, Vmax and CLmax values for DEHP hydrolysis were 8.40 μM, 0.43 nmol min−1 mg−1 protein and 27.5 μL min−1 mg−1 protein, respectively. The S50 value was about 10% of DBP and BBzP hydrolysis, and the Vmax value was also markedly lower (<3%) than those for DBP hydrolysis and MBzP formation for BBzP hydrolysis. The ranking order of CLmax values for monoester phthalate formation in DBP, BBzP and DEHP hydrolysis was BBzP to MBzP ? DBP to MBP > DEHP to MEHP > BBzP to MBP. These findings suggest that the hydrolysis activities of diester phthalates by human liver microsomes depend on the chemical structure, and that the metabolism profile may relate to diester phthalate toxicities, such as hormone disruption and reproductive effects.  相似文献   

8.
Lu C  Bjerg PL  Zhang F  Broholm MM 《Chemosphere》2011,83(11):1467-1474
The sorption of chlorinated solvents and degradation products on seven natural clayey till samples from three contaminated sites was investigated by laboratory batch experiments in order to obtain reliable sorption coefficients (Kd values). The sorption isotherms for all compounds were nearly linear, but fitted by Freundlich isotherms slightly better over the entire concentration range. For chloroethylenes, tetrachloroethylene (PCE) was most strongly sorbed to the clayey till samples (Kd = 0.84-2.45 L kg−1), followed by trichloroethylene (TCE, Kd = 0.62-0.96 L kg−1), cis-dichloroethylene (cis-DCE, Kd = 0.17-0.82 L kg−1) and vinyl chloride (VC, Kd = 0.12-0.36 L kg−1). For chloroethanes, 1,1,1-trichloroethane (1,1,1-TCA) was most strongly sorbed (Kd = 0.2-0.45 L kg−1), followed by 1,1-dichloroethane (1,1-DCA, Kd = 0.16-0.24 L kg−1) and chloroethane (CA, Kd = 0.12-0.18 L kg−1). This is consistent with the order of hydrophobicity of the compounds. The octanol-water coefficient (log Kow) correlated slightly better with log Kd values than log Koc values indicating that the Kd values may be independent of the actual organic carbon content (foc). The estimated log Koc or log Kd for chlorinated solvents and degradation products determined by regression of data in this study were significantly higher than values determined by previously published empirical relationships. The site specific Kd values as well as the new empirical relationship compared well with calculations on water and soil core concentration for cis-DCE and VC from the Rugårdsvej site. In conclusion, this study with a wide range of chlorinated ethenes and ethanes - in line with previous studies on PCE and TCE - suggest that sorption in clayey tills could be higher than typically expected.  相似文献   

9.
Ecotoxicological risks of agricultural application of six insecticides to soil organisms were evaluated by acute toxicity tests under laboratory condition following OECD guidelines using the epigeic earthworm Eisenia fetida as the test organism. The organochlorine insecticide endosulfan (LC50 - 0.002 mg kg−1) and the carbamate insecticides aldicarb (LC50 - 9.42 mg kg−1) and carbaryl (LC50 - 14.81 mg kg−1) were found ecologically most dangerous because LC50 values of these insecticides were lower than the respective recommended agricultural dose (RAD). Although E. fetida was found highly susceptible to the pyrethroid insecticide cypermethrin (LC50 - 0.054 mg kg−1), the value was higher than its RAD. The organophosphate insecticides chlorpyrifos (LC50 - 28.58 mg kg−1), and monocrotophos (LC50 - 39.75 mg kg−1) were found less toxic and ecologically safe because the LC50 values were much higher than their respective RAD.  相似文献   

10.
The goal of this study was to compare removal efficiencies of tetrabromobisphenol A (TBBPA) using typical wastewater treatment technologies, and to identify the most significant mechanisms of removal. Two types of municipal wastewater reactors were studied: a full-scale conventional activated sludge (CAS) reactor with tertiary treatment; and three pilot-scale membrane bioreactors (MBRs) having different sludge retention times (SRTs). All four reactors were fed the same influent. A third reactor type, a membrane aerated biofilm reactor (MABR) was fed tap water, ammonia, and TBBPA. TBBPA in municipal influent ranged from 1 to 41 ng L−1 (n = 10). The CAS effluent had an average TBBPA concentration of 0.7 ± 1.3 ng L−1 (n = 3). Effluent concentrations from the MBRs were an average of 6 ± 6 ng L−1 TBBPA (n = 26). Significant TBBPA removal was observed in the MABR throughout the 5 week of study (p ? 0.05). Removal of TBBPA from wastewater treatment was found to be due to a combination of adsorption and biological degradation. Based on experimental results, nitrification is likely a key process therein. No significant relationship between removal of TBBPA and SRT was identified (p ? 0.05).  相似文献   

11.
Su CM  Hsueh HT  Chen HH  Chu H 《Chemosphere》2012,88(6):706-711
The concept of CO2 chemo-absorption by sodium hydroxide in a wet scrubber followed by microalgae cultivation was used as a means to reduce the major greenhouse gas. A thermophilic and alkaline tolerable cyanobacterium named Thermosynechococcus CL-1 (TCL-1) was cultivated in continuous system, with a carbonate-bicarbonate buffer as carbon source. The effects of dissolved inorganic carbon (DICin) and nutrient levels in influent on cell mass productivity, DIC removal efficiency, and alkaline solution regeneration by TCL-1 were investigated. The results show the highest cell mass productivity reaches 1.7 g L−1 d−1 under the highest DIC and nutrients level. Conversely, the best regeneration of alkaline solution proceeds from pH 9.5 to 11.3 under the lowest level. In addition, the highest ΔDIC (DIC consumption) and DIC removal efficiency are 42 mM and 43% at 113.2 and 57 mM DICin, respectively.  相似文献   

12.
Liu YP  Li JG  Zhao YF  Wen S  Huang FF  Wu YN 《Chemosphere》2011,83(2):168-174
The levels of polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) were determined in marine fish from four areas of China (South China Sea, Bohai Sea, East China Sea, and Yellow Sea) using GC/NCI-MS and GC/ITMS, respectively. Total concentrations of eight PBDEs (BDE-28, 47, 99, 100, 153, 154, 183 and 209) in all samples ranged from 0.3 ng g−1 ww (wet weight) to 700 ng g−1 ww, with median and mean values of 85 ng g−1 ww and 200 ng g−1 ww, respectively. BDE-209 and BDE-47 were the major congeners in all samples, contributing 54% and 19% to the total concentration, respectively. The sum of seven indicator PCB levels (CB-28, 52, 101, 118, 138, 153, and 180) ranged from 0.3 ng g−1 ww to 3.1 μg g−1 ww, with median and mean values of 6.4 ng g−1 ww and 398 ng g−1 ww, respectively. High contributions of CB-138 (32%) and CB-153 (25%) were found in all samples. In general, pollutants measured in this study were at high levels when compared with previous studies from other regions in the world. The relative abundance of BDE-209 may suggest that deca-BDE sources existed in studied area. And principal component analysis (PCA) showed that there were other PBDE sources in Yellow Sea. The pattern and PCA showed that PCB pollutions came from similar sources in the studied areas. In addition, concentrations of ∑7PBDEs (u/209) were strongly correlated with those of ∑7PCBs in all fish (r = 0.907, n = 44).  相似文献   

13.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

14.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

15.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

16.
Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment   总被引:3,自引:0,他引:3  
Chang BV  Yuan SY  Ren YL 《Chemosphere》2012,87(5):535-541
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for TBBPA (50 μg g−1) ranged from 0.053 to 0.077 d−1 and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g−1) was enhanced by adding yeast extract (5 mg L−1), sodium chloride (10 ppt), cellulose (0.96 mg L−1), humic acid (0.5 g L−1), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L−1), or surfactin (43 mg L−1), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g−1) > nonylphenol (NP) (50 μg g−1) > 4,4′-dibrominated diphenyl ether (BDE-15) (50 μg g−1) > TBBPA (50 μg g−1) > 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) (50 μg g−1). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.  相似文献   

17.
Li F  Sun H  Hao Z  He N  Zhao L  Zhang T  Sun T 《Chemosphere》2011,84(2):265-271
In this study, nine perfluorinated compounds (PFCs) were investigated in water and sediment of Haihe River (HR) and Dagu Drainage Canal (DDC), Tianjin, China. The total PFCs in water samples from DDC (40-174 ng L−1) was much greater than those from HR (12-74 ng L−1). PFC contamination was severe at lower reaches of HR due to industry activities, while high PFCs were found in the middle of DDC due to the effluents from wastewater treatment plants. Perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) were the predominant PFCs in aqueous phase. The total PFCs in sediments from DDC (1.6-7.7 ng g−1 dry weight) were lower as compared to HR (7.1-16 ng g−1), maybe due to the dredging of sediment in DDC conducted recently. PFOS was the major PFC in HR sediments followed by PFOA; while PFHxA was the major PFC in DDC sediments. Organic carbon calibrated sediment-water distribution coefficients (KOC) were calculated for HR. The Log KOC ranged from 3.3 to 4.4 for C7-C11 perfluorinated carboxylic acids, increasing by 0.1-0.6 log units with each additional CF2 moiety. The log KOC for 8:2 fluorotelomer unsaturated acid was reported for the first time with a mean value of 4.0. The log Koc of PFOS was higher than perfluoronanoic acid by 0.8 log units.  相似文献   

18.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

19.
The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km = 77.2 mM; Vmax = 38.2 mU/mg protein) and 1-naphthyl acetate (Km = 222 mM, Vmax = 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 = 1.35 × 10−5-3.80 × 10−8 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2-aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 = 1.20 × 10−5-2.98 × 10−8 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions.  相似文献   

20.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号