首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Thompson J  Eaglesham G  Mueller J 《Chemosphere》2011,83(10):1320-1325
Perfluorinated alkyl acids (PFAAs) are persistent environmental pollutants, found in the serum of human populations internationally. Due to concerns regarding their bioaccumulation, and possible health effects, an understanding of routes of human exposure is necessary. PFAAs are recalcitrant in many water treatment processes, making drinking water a potential source of human exposure. This study was conducted with the aim of assessing the exposure to PFAAs via potable water in Australia. Sixty-two samples of potable water, collected from 34 locations across Australia, including capital cities and regional centers. The samples were extracted by solid phase extraction and analyzed via liquid chromatography/tandem mass spectrometry for a range of perfluoroalkyl carboxylates and sulfonates. PFOS and PFOA were the most commonly detected PFAAs, quantifiable in 49% and 44% of all samples respectively. The maximum concentration in any sample was seen for PFOS with a concentration of 16 ng L−1, second highest maximums were for PFHxS and PFOA at 13 and 9.7 ng L−1. The contribution of drinking water to daily PFOS and PFOA intakes in Australia was estimated. Assuming a daily intake of 1.4 and 0.8 ng kg−1 bw for PFOS and PFOA the average contribution from drinking water was 2-3% with a maximum of 22% and 24% respectively.  相似文献   

2.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have recently received attention due to their widespread contamination of the environment. PFOS and PFOA are stable in the environment and resistant to metabolism, hydrolysis, photolysis and biodegradation. PFOS and PFOA have been found in human blood and tissue samples from both occupationally exposed workers and the general worldwide population. This study aimed to determine the background levels of PFOS and PFOA in the Taiwanese population, investigate related factors, and compare exposure in Taiwan to that in other countries. The concentration of PFOS in the 59 serum samples collected from the general population in Taiwan ranged from 3.45 to 25.65 ng mL−1 (median: 8.52), and the concentration of PFOA ranged from 1.55 to 7.69 ng mL−1 (median: 3.22). There was a significant positive correlation (r = 0.51; p < 0.0001) between PFOS and PFOA concentrations. Males had higher concentrations of PFOA and PFOS than females. PFOS levels in serum increased with age. This study is the first investigation to reveal the PFOS and PFOA levels of serum samples in the general population of Taiwan. The levels of PFOS and PFOA in Taiwanese serum samples were comparable with those from other countries (PFOS: 5.0–35 ng mL−1, PFOA: 1.5–10 ng mL−1).  相似文献   

3.
Chen HY  Liao W  Wu BZ  Nian H  Chiu K  Yak HK 《Chemosphere》2012,89(2):179-184
The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from solid matrices has received considerable attention because of the environmental persistence, bioaccumulation, and potential toxicity of these compounds. This study presents a simple method using concentrated HNO3 as a suppression agent, and methanol-modified supercritical carbon dioxide (Sc-CO2) extraction for removing PFOS and PFOA from solid matrices. The optimal conditions were 16 M HNO3 and 20% (v/v) methanol containing Sc-CO2, under a pressure of 20.3 MPa and a temperature of 50 °C. Extraction time was set at 70 min (40 min for static and 30 min for dynamic extraction). PFOA and PFOS were identified and quantitated by liquid chromatography/mass spectrometry. The extraction efficiencies (with double extractions) were close to 100% for PFOA and 80% for PFOS for both paper and fabric matrices. The extraction efficiencies for sand were approximately 77% for PFOA and 59% for PFOS. The results show that this method is accurate, and effective, and that it provides a promising and convenient approach to remediate the environment of hazardous PFOA and PFOS contamination.  相似文献   

4.
The bioaccumulation of perfluorooctanesulfonamide (PFOSA) and two fluorotelomer alcohols (8:2 FTOH, 10:2 FTOH) by rainbow trout (Oncorhynchus mykiss) through dietary exposure, including depuration rates and metabolism was investigated. Concentrations in the spiked feed ranged from 10.9 μg g−1 wet weight (wet wt) for PFOSA and 6.7 μg g−1 wet wt for 8:2 FTOH to 5.0 μg g−1 wet wt for 10:2 FTOH. Trout was fed at 1.5% body weight per day for 30 d and depuration was followed for up to 30 d following previously published dietary exposure protocols. Perfluorooctanesulfonate (PFOS) was the major perfluoroalkylsulfonate (PFSA) detected in fish following dietary exposure to PFOSA. Half-lives of PFOS and PFOSA were 16.9 ± 2.5 and 6.0 ± 0.4 d, respectively. A biomagnification factor (BMF) of 0.023 was calculated for PFOSA which indicates that dietary exposure to PFOSA does not result in biomagnification in the rainbow trout. PFOS had a BMF of 0.08. The fluorotelomer saturated acids (8:2 FTCA, 10:2 FTCA) and fluorotelomer unsaturated acids (8:2 FTUCA, 10:2 FTUCA) were the major products detected in rainbow trout following dietary exposure to 8:2 FTOH and 10:2 FTOH, respectively. Half-lives were 3.7 ± 0.4, 2.1 ± 0.5, 3.3, and 1.3 d for 10:2 FTCA, 10:2 FTUCA, 8:2 FTCA, and 8:2 FTUCA, respectively. Small amounts of perfluorooctanoate (PFOA) and perfluorodecanoate (PFDA) were also detected in the FTOH exposed fish.  相似文献   

5.
In this study, investigation was conducted into concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in Chinese farmed Trachinotus ovatus between 2014 and 2015 using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) and ultra fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method. The tissue distribution (muscle, skin, liver, kidney and gill) in Trachinotus ovatus was also assessed. The detection frequencies of PFOS and PFOA in fish were 92% and 3%, respectively, and the mean concentrations were 0.392 and 0.015 μg/kg wet weight. The analysis of PFOS distribution in different tissues in Trachinotus ovatus showed the following trend: skin> gill> kidney> liver> flesh. Results revealeded farmed Trachinotus ovatus in China to generally be contaminated with PFOS. Moreover, the average daily intake for Chinese urban residents calculated on the basis of pollution content was 0.268 ng/kg body weight/d (PFOS) and 0.014 ng/kg body weight /d (PFOA), respectively. Both hazard ratio values were less than 1, indicating that exposure levels of PFOS and PFOA through Trachinotus ovatus consumption may not lead to adverse health effects in the Chinese population.  相似文献   

6.
SK Kim 《Chemosphere》2012,89(8):995-1002
Long-range transport of and exposure to perfluorinated substances (PFSs) strongly depend on their emission mode. In the present study, watershed-based riverine discharge loads and emission factors are estimated for perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorohexylsulfonate (PFHxS), and perfluorooctylsulfonate (PFOS) by using spatially distributed data of chemical concentrations together with water flows and a geographic information system (GIS). Average per capita emissions (emission factor, μg capita−1 d−1) are 75 for PFOA, 36 for PFNA, 17 for PFHxS, and 43 for PFOS, which are several times lower than the estimates for Japan and the European continent. A relatively uniform distribution is observed for PFHxS and PFOS emission factors, while elevated values of PFOA and PFNA predominate in one of eight river basins. This may indicate the leading contribution of diffusive sources (e.g. nonpoint source) for PFHxS and PFOS versus the presence of localized point sources for PFOA and PFNA. The lower-upper bound of total riverine loads discharged annually from the Korean peninsula are in the range of 0.53-1.3 tons for PFOA, 0.09-0.60 tons for PFNA, 0.07-0.29 tons for PFHxS, and 0.19-0.73 tons for PFOS, accounting for <1% of global annual emissions. Furthermore, these riverine discharge loads are significantly greater than the discharge loads from a wastewater treatment plant, indicating the necessity of further study of nonpoint sources.  相似文献   

7.
Knobeloch L  Imm P  Anderson H 《Chemosphere》2012,88(7):779-783
Perfluoroalkyl chemicals (PFCs) have been used as surfactants and stain repellants in a variety of consumer products for more than 50 years and there is growing concern regarding their persistence and toxicity. Human exposure to these chemicals is essentially universal in North America and researchers have linked them to a variety of health problems ranging from higher rates of cancer, to developmental and reproductive problems, and higher cholesterol levels. Major exposure pathways are food and water ingestion, dust ingestion via hand to mouth transfer. In an effort to assess residential exposure, the Wisconsin Department of Health Services tested vacuum cleaner contents from thirty-nine homes for 16 perflouroalkyl chemicals. PFOS, PFOA, PFHxS, PFHpA and PFNA were found in all of the vacuum dust samples and dust from eight homes contained all 16 PFCs included in our analysis. The most commonly detected compounds were perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate (PFHxS) and perfluorooctanoic acid (PFOA) which together made up 70% of the total PFC residues in dust from these homes. Summed PFC concentrations in these dust samples ranged from 70 to 2513 ng/g (median 280 ng/g). Our investigation suggests that these chemicals may be ubiquitous contaminants in US homes.  相似文献   

8.
With the objective to evaluate exposure of the population in Flanders (Belgium) to perfluorinated compounds (PFCs), we measured perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in settled dust in homes and offices, in a selection of food items from local origin, in drinking-water and in human serum. We complemented the data with results from a literature survey. Based on this dataset we calculated intake by children and adults from food, drinking-water, settled dust and soil, and air. Dietary exposure dominated overall intake. For adults, average dietary intake equalled 24.2 (P95 40.9) ng PFOS kg−1 d−1 and 6.1 (P95 9.6) ng PFOA kg−1 d−1, whereas for children the dietary intake was about 3 times higher. Predicted intake is high when compared to assessments in other countries, and to serum levels from Flanders, but comparable to the intakes published by The European Food Safety Authority (EFSA) in 2008. Intake of PFOS and PFOA remained below the Tolerable Daily Intake.  相似文献   

9.
F Wang  C Liu  K Shih 《Chemosphere》2012,89(8):1009-1014
Understanding the interaction of perfluorochemicals, persistent pollutants with known human health effects, with mineral compounds in surface water and groundwater environments is essential to determining their fate and transport. Kinetic experiments showed that adsorption equilibrium can be achieved within 48 h and the boehmite (AlOOH) surface is receptive to perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) adsorption. The adsorption isotherms estimated the maximum adsorption capacities of PFOS and PFOA on boehmite as 0.877 μg m−2 and 0.633 μg m−2, respectively. Compared to the adsorption capacity on γ-alumina, the abundant hydroxyl groups on boehmite surfaces resulted in the 2-3 times higher adsorption of PFOS and PFOA. Increasing solution pH led to a moderate decrease in PFOS and PFOA adsorption, owing to an increase in ligand exchange reactions and the decrease of electrostatic interactions. The presence of NaCl and CaCl2 in solution demonstrated negative effects for PFOS and PFOA adsorption on boehmite surfaces, with potential mechanisms being electrical double layer compression, competitive adsorption of chloride, and the Ca2+ bridging effect between perfluorochemicals.  相似文献   

10.
Yang L  Zhu L  Liu Z 《Chemosphere》2011,83(6):806-814
The concentrations of four perfluorinated sulfonate acids (PFSAs) and 10 perfluorinated carboxylate acids (PFCAs) were measured in water and sediment samples from Liao River and Taihu Lake, China. In the water samples from Taihu Lake, PFOA and PFOS were the most detected perfluorinated compounds (PFCs); in Liao River, PFHxS was the predominant PFC followed by PFOA, while PFOS was only detected in two of the samples. This suggests that different PFC products are used in the two regions. PFOS and PFOA in both watersheds are at similar level as in the rivers of Japan, but significantly lower than in Great Lakes. The contributions of PFOS and long chain PFCAs in sediments were much higher than in water samples of both watersheds, indicating preferential partition of these PFCs in sediment. The concentrations of PFOS and PFOA were three orders of magnitude of lower than that of polycyclic aromatic hydrocarbons in the same sediments. The average sediment-water partition coefficients (log Koc) of PFHxS, PFOS and PFOA were determined to be 2.16, 2.88 and 2.28 respectively.  相似文献   

11.
This paper examines the fate of perfluorinated sulfonates (PFSAs) and carboxylic acids (PFCAs) in two water reclamation plants in Australia. Both facilities take treated water directly from WWTPs and treat it further to produce high quality recycled water. The first plant utilizes adsorption and filtration methods alongside ozonation, whilst the second uses membrane processes and advanced oxidation to produce purified recycled water. At both facilities perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorohexanoic acid (PFHxA) and perfluorooctanoic acid (PFOA) were the most frequently detected PFCs. Concentrations of PFOS and PFOA in influent (WWTP effluent) ranged up to 3.7 and 16 ng L−1 respectively, and were reduced to 0.7 and 12 ng L−1 in the finished water of the ozonation plant. Throughout this facility, concentrations of most of the detected perfluoroalkyl compounds (PFCs) remained relatively unchanged with each successive treatment step. PFOS was an exception to this, with some removal following coagulation and dissolved air flotation/sand filtration (DAFF). At the second plant, influent concentrations of PFOS and PFOA ranged up to 39 and 29 ng L−1. All PFCs present were removed from the finished water by reverse osmosis (RO) to concentrations below detection and reporting limits (0.4-1.5 ng L−1). At both plants the observed concentrations were in the low parts per trillion range, well below provisional health based drinking water guidelines suggested for PFOS and PFOA.  相似文献   

12.
We analyzed polychlorobiphenyls (PCBs), perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) in the edible part of farmed sea bass reared in two fish farms in Liguria (Northern Italy). The aim was to determine the contamination levels and human exposure to these chemicals through fish consumption. Concentrations of “dioxin-like” PCBs (DL-PCBs) ranged from 0.033 to 0.759 pg ΣTEQ-PCB g−1 whole weight (w.w.) in fish farm 1 and from 0.032 to 1.60 pg ΣTEQ-PCB g−1 w.w. in fish farm 2, and the six indicators of “non-dioxin-like” (NDL-PCBs) from 0.538 to 9.33 ng Σ6PCB g−1 w.w. and from 1.62 to 27.6 ng Σ6PCB g−1 w.w. Concentrations were generally lower in farm 1 than in farm 2. One reason for this difference might be the proximity of farm 2 to the seaport of La Spezia, which could be a punctual source of pollutants influencing the contamination of the water in the farm. Principal component analysis (PCA) showed differences also in the congeners profiles for the two sites, with higher-chlorinated PCBs more abundant in farm 1, and lower-chlorinated PCBs were more abundant in farm 2. Most of the concentrations of PFOS and PFOA were below the limit of detection (LOD 0.05 ng g−1 w.w.). Only about 10% of the samples analyzed had levels slightly higher than the LOD. Assessments of exposure using these data showed that consumption of farmed fish may contribute significantly to PCBs through the diet, whereas the contribution of PFOS and PFOA seems to be low.  相似文献   

13.
This study provides the first evidence on the influence of the semiconductor and electronics industries on perfluorinated chemicals (PFCs) contamination in receiving rivers. We have quantified ten PFCs, including perfluoroalkyl sulfonates (PFASs: PFBS, PFHxS, PFOS) and perfluoroalkyl carboxylates (PFCAs: PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFDoA) in semiconductor, electronic, and optoelectronic industrial wastewaters and their receiving water bodies (Taiwan's Keya, Touchien, and Xiaoli rivers). PFOS was found to be the major constituent in semiconductor wastewaters (up to 0.13 mg/L). However, different PFC distributions were found in electronics plant wastewaters; PFOA was the most significant PFC, contributing on average 72% to the effluent water samples, followed by PFOS (16%) and PFDA (9%). The distribution of PFCs in the receiving rivers was greatly impacted by industrial sources. PFOS, PFOA and PFDA were predominant and prevalent in all the river samples, with PFOS detected at the highest concentrations (up to 5.4 μg/L).  相似文献   

14.
Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hisida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006.  相似文献   

15.
The exposure of humans to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) was quantified with emphasis on assessing the relative importance of metabolic transformation of precursor compounds. A Scenario-Based Risk Assessment (SceBRA) approach was used to model the exposure to these compounds from a variety of different pathways, the uptake into the human body and resulting daily doses. To capture the physiological and behavioral differences of age and gender, the exposure and resulting doses for seven consumer groups were calculated. The estimated chronic doses of a general population of an industrialized country range from 3.9 to 520 ng/(kg day) and 0.3 to 140 ng/(kg day) for PFOS and PFOA, respectively. The relative importance of precursor-based doses of PFOS and PFOA was estimated to be 2-5% and 2-8% in an intermediate scenario and 60-80% and 28-55% in a high-exposure scenario. This indicates that sub groups of the population may receive a substantial part of the PFOS and PFOA doses from precursor compounds, even though they are of low importance for the general population. Similar to a preceding study, uptake of perfluorinated acids from contaminated food and drinking water was identified as the most important pathway of exposure for the general population. The biotransformation yields of telomer-based precursors and to a lesser extent perfluorooctanesulfonylfluoride-based precursors were identified as influential parameters in the uncertainty analysis. Fast food consumption and fraction of food packaging paper treated with PFCs were influential parameters for determining the doses of PFOA.  相似文献   

16.
Nguyen VT  Reinhard M  Karina GY 《Chemosphere》2011,82(9):1277-1285
Perfluorochemicals (PFCs) are used in numerous applications, mainly as surfactants, and occur ubiquitously in the environment as complex mixtures. This study was undertaken to characterize the occurrence and sources of commonly detected PFC compounds in surface waters of the Marina catchment, a watershed that drains an urbanized section of Singapore. Of the 19 target PFCs, 13 were detected with perfluorooctanoic acid (PFOA) (5-31 ng L−1) and perfluorooctane sulfonate (PFOS) (1-156 ng L−1) being the dominant components. Other compounds detected included perfluoroalkyl carboxylates (C7-C12) and perfluoroalkyl sulfonates (C6 and C8). Sulfonamide compounds detected 2-(N-ethylperfluorooctanesulfonamido) acetic acid (N-EtFOSAA), 2-(N-methylperfluorooctanesulfonamido) acetic acid (N-MeFOSAA), perfluorooctanesulfonamido acetic acid (FOSAA) and perfluorooctanesulfonamide (FOSA) were putative transformation products of N-EtFOSE and N-MeFOSE, the N-ethylated and N-methylated ethyl alcohol derivatives, respectively. Surface water concentrations were generally higher during dry weather than during storm water flow: the median concentrations of total PFCs in dry and wet weather were 57 and 138 ng L−1 compared to 42 and 79 ng L−1, respectively, at Stamford and Alexandra canal, suggesting the presence of a continuous source(s) which is subject to dilution during storm events. In rain water, median concentrations were 6.4 ng L−1, suggesting rain contributed from 12-25% to the total PFC load for non-point source sites. The longitudinal concentration profile along one of the canals revealed a point source of sulfonated PFCs (PFOS), believed to originate from aqueous film-forming foam (AFFF). Sources were characterized using principal component analysis (PCA) and by plotting PFHxS/PFOA against PFOS/PFOA. Typical surface waters exhibit PFOS/PFOA and PFHxS/PFOA ratios below 0.9 and 0.5, respectively. PCA plots reveal waters impacted by “non-typical” PFC sources in Alexandra canal.  相似文献   

17.
This research aimed to optimize the extraction method parameters for sample pretreatment and determine the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in food packaging made of paper. Techniques used were pressurized liquid extraction (PLE) followed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Influence parameters of PLE were carefully evaluated for extracted concentration of samples in low level (ng g?1). The study found that the optimal conditions for PLE were 30 min static extraction time with a flush volume of 100% cell volume and one extraction cycle at 80°C and 1,000 psi. The extraction technique validated the absolute recovery from PFOS and PFOA fortified control samples at three different levels (5, 50, and 200 ng g?1), with seven repeats at each fortification level. The average recoveries were 79% or higher, with relative standard deviation (RSD) less than 11%. Optimization of the PLE method was established based on recovery data, accuracy, precision, and repeatability of the method. Using optimal PLE technique, PFOS and PFOA were extracted from 34 food-packaging samples collected in Thailand. PFOS and PFOA were detected in all kinds of collected samples, with average concentrations of 4.89 and 2.87 ng g?1, respectively. The concentrations of PFOS and PFOA were highest in fast-food container samples: 36.99 and 9.99 ng g?1, respectively.  相似文献   

18.
The objective of the Control of Hazardous Substances in the Baltic Sea (COHIBA) project is to support the implementation of the HELCOM Baltic Sea Action Plan regarding hazardous substances by developing joint actions to achieve the goal of “a Baltic Sea with life undisturbed by hazardous substances”. One aim in the project was to identify the most important sources of 11 hazardous substances of special concern in the Baltic Sea. Among them are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In this study, four perfluorinated alkyl acids (PFAAs) were studied: PFOA, PFOS, perfluorohexanoic acid (PFHxA) and perfluorodecanoic acid (PFDA). The occurrence of PFAAs in municipal and industrial wastewater treatment plant effluents (MWWTP1-3, IWWTP1), target industry effluent, storm water, landfill leachate and sludge was studied. Effluents were analysed six times and storm water, leachate and sludge were analysed twice, once in the warm season and once in the cold, during a 1-year sampling campaign. PFOS prevailed in two municipal effluents (MWWTP1 and 3) and industrial effluent (IWWTP1; 7.8–14, 8.0–640 and 320–1,300 ng/l, respectively). However, in one municipal effluent (MWWTP2) PFOA was, in a majority of sampling occasions, the predominant PFAA (9–15 ng/l) followed by PFOS (3.8–20 ng/l). The highest PFAA loads of the municipal effluents were found in the MWWTP3 receiving the biggest portion of industrial wastewater. In storm water the highest concentration was found for PFHxA (17 ng/l). The highest concentration of PFOS and PFOA were 9.9 and 5.1 ng/l, respectively. PFOS, PFOA and PFHxA were detected in every effluent, storm water and landfill leachate sample, whereas PFDA was detected in most of the samples (77 %). In the target industry, PFOS concentrations varied between 1,400 and 18,000 μg/l. In addition, on one sampling occasion PFOA and PFHxA were found (0.027 and 0.009 μg/l, respectively). For effluents, PFAA mass flows into the Baltic Sea were calculated. For municipal wastewater treatment plants average mass flows per day varied for PFOS between 1,073 and 38,880 mg/day, for PFOA 960 and 2,700 mg/day, for PFHxA 408 and 1,269 mg/day and for PFDA 84 and 270 mg/day. In IWWTP mass flows for PFOS, PFOA, PFHxA and PFDA were 495 mg/d, 28 mg/d, 23 mg/d and 0.6 mg/g, respectively.  相似文献   

19.
Laboratory partitioning experiments were conducted to elucidate the sorption behaviour and partitioning of perfluoroalkyl compounds (PFCs). Three different sediment types were used and separately spiked with perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) at low environmentally realistic concentrations. PFOA, PFOS and PFOSA were mainly distributed in the dissolved phase at low suspended solid concentrations, indicating their long-range transport potential in the marine environment. In all cases, the equilibrium isotherms were linear and the organic carbon normalised partition coefficients (KOC) decreased in the following order: PFOSA (log KOC = 4.1 ± 0.35 cm3 g−1) > PFOS (3.7 ± 0.56 cm3 g−1) > PFOA (2.4 ± 0.12 cm3 g−1). The level of organic content had a significant influence on the partitioning. For the sediment with negligible organic content the density of the sediment became the most important factor influencing the partitioning. Ultimately, data on the partitioning of PFCs between aqueous media and suspended solids are essential for modelling their transport and environmental fate.  相似文献   

20.
Perfluorinated chemicals in selected residents of the American continent   总被引:11,自引:0,他引:11  
Perfluorinated chemicals (PFCs) are used in multiple consumer products. Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), the most widely studied PFCs, may be potential developmental, reproductive, and systemic toxicants. Although PFCs seem to be ubiquitous contaminants found both in humans and animals, geographic differences may exist in human exposure patterns to PFCs. We measured 11 PFCs in 23 pooled serum samples collected in the United States from 1990 through 2002, and in serum samples collected in 2003 from 44 residents from Trujillo, Peru. PFOS and PFOA were detected in all the pooled samples; perfluorohexane sulfonic acid (PFHxS) was detected in 21. Median concentrations were 31.1 micrograms per liter (mug/l, PFOS), 11.6 microg/l (PFOA), and 2 microg/l (PFHxS). The 90th percentile concentrations of PFCs in the 44 Peruvian residents were 0.7 microg/l (PFOS), 0.1 microg/l (PFOA), and <0.3 microg/l (PFHxS). The frequencies of detection were 20% (PFOS), 25% (PFOA), and 9% (PFHxS). The frequent detection of selected PFCs in the pooled samples from the United States and the lack of clear concentration trends based on a year of collection suggest a sustained widespread exposure to these compounds among US residents, at least since the 1990s. By contrast, the much lower frequency of detection and concentration ranges of PFCs in Peru suggest a lower exposure of Peruvians to PFCs compared with North Americans. Genetic variability, diet, lifestyle, or a combination of all these may contribute to the different patterns of human exposure to PFCs in the United States and Peru.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号