首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Jin X  Zha J  Xu Y  Giesy JP  Richardson KL  Wang Z 《Chemosphere》2012,86(1):17-23
2,4,6-Trichlorophenol (2,4,6-TCP) is a common chemical intermediate and a by-product of water chlorination and combustion processes, and is a priority pollutant of the aquatic environment in many countries. Although information on the toxicity of 2,4,6-TCP is available, there is a lack of information on the predicted no-effect concentration (PNEC) of 2,4,6-TCP, mainly due to the shortage of chronic and site-specific toxicity data. In the present study, acute and sub-chronic toxicity of 2,4,6-TCP on six different resident Chinese aquatic species were determined. PNEC values were calculated and compared by use of two approaches: assessment factor (AF) and species sensitivity distribution (SSD). Values for acute toxicity ranged from 1.1 mg L−1 (Plagiognathops microlepis) to 42 mg L−1 (Corbicula fluminea) and the sub-chronic no observed effect concentrations (NOECs) ranged from 0.05 mg L−1 (Mylopharyngodon piceus) to 2.0 mg L−1 (C. fluminea). PNECs obtained by the assessment factor approach with acute (AF = 1000, 0.001 mg L−1) or chronic (AF = 10, 0.005 mg L−1) toxicity data were one order of magnitude less than those from SSD methods (0.057 mg L−1). PNEC values calculated using SSD methods with a 50% certainty for 2,4,6-TCP was less than those obtained by use of the USEPA recommend final chronic value (FCV) method (0.097 mg L−1) and the one obtained by use of the USEPA recommend acute-to-chronic (ACR) methods (0.073 mg L−1). PNECs derived using AF methods were more protective and conservative than that derived using SSD methods.  相似文献   

2.
Jin X  Zha J  Xu Y  Wang Z  Kumaran SS 《Chemosphere》2011,84(10):1506-1511
2,4-Dichlorophenol (2,4-DCP) is known as an important chemical intermediate and an environmental endocrine disruptor. There is no paper dealing with the predicted no-effect concentration (PNEC) of 2,4-DCP, mainly due to shortage of chronic and site-specific toxicity data. In the present study, toxicity data was obtained from the tests using six Chinese native aquatic species. The HC5 (hazardous concentration for 5% of species) was derived based on the constructed species sensitivity distribution (SSD), which was compared with that derived from literature toxicity data of non-native species. For invertebrates, the survival no-observed effect concentrations (NOECs) were 0.05 and 1.00 mg L−1 for Macrobrachium superbum and Corbicula fluminea, respectively. NOECs based on fishes’ growth were 0.10, 0.20 and 0.40 mg L−1 for Mylopharyngodon piceus, Plagiognathops microlepis and Erythroculter ilishaeformis, respectively. For aquatic plant Soirodela polyrhiza, NOEC based on concentration of chlorophyll was 1.00 mg L−1. A final PNEC calculated using the SSD approach with a 50% certainty based on different taxa ranged between 0.008 and 0.045 mg L−1. There is no significant difference between HC5 derived from native and that from non-native taxa.  相似文献   

3.
This review summarizes the existing knowledge on the occurrence of tire wear particles in the environment, and their ecotoxicological effects. A meta-analysis on tire components in the environment revealed that tire wear particles are present in all environmental compartments, including air, water, soils/sediments, and biota. The maximum Predicted Environmental Concentrations (PECs) of tire wear particles in surface waters range from 0.03 to 56 mg l−1 and the maximum PECs in sediments range from 0.3 to 155 g kg−1 d.w. The results from our previous long-term studies with Ceriodaphnia dubia and Pseudokirchneriella subcapitata were used to derive Predicted No Effect Concentrations (PNECs). The upper ranges for PEC/PNEC ratios in water and sediment were >1, meaning that tire wear particles present potential risks for aquatic organisms. We suggest that management should be directed towards development and production of more environmentally friendly tires and improved road runoff treatment.  相似文献   

4.
The release of hospital wastewater into the urban sewer networks contributes to the general contamination of aquatic media by pharmaceutical residues. These residues include bio-accumulative pharmaceuticals that lead to increased risk for ecosystems because they can concentrate in organisms and food chains, and therefore reach toxic levels. In order to assess the ecotoxicological risks linked to this particular category of residues, we have developed a specific method, by combining a theoretical calculation of pollutant concentrations in organisms to estimate Body Residue (BR), and ecotoxicity biomarkers in fish cell lines, enabling the calculation of a Critical Body Residue (CBR). This method finally results in the calculation of a specific risk quotient (Qb = BR/CBR), characterizing the risk linked to this type of pollutant. This method was applied to mitotane, a bio-accumulative pharmaceutical typically found in hospital wastewater, in the framework of an exposure scenario corresponding to the discharge of all the hospital wastewaters into the Rhone River which flows through the city of Lyon, France. This approach leads to risk quotients (Qb and Qbg) much higher than those found with the classical approach, i.e. Q = PEC/PNEC (Predictive Environmental Concentration/Predictive Non Effect Concentration) = 0.0006. This difference in the appreciation of risk is important when using cytotoxicity as the criterion for measuring the toxicity of mitotane (Qb = 0.056) and it is even greater when the criterion used is genotoxicity (Qbg = 6.8). This study must be now consolidated by taking the biomagnification of the pharmaceuticals into consideration.  相似文献   

5.
6.
Yan S  Zhou Q 《Chemosphere》2011,85(6):1088-1094
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.  相似文献   

7.
S D Dyer 《Chemosphere》2001,44(3):369-376
Several weight of the evidence approaches for the effects assessment of boron to aquatic organisms have been conducted. The focal point for all of these assessments is the appropriate interpretation of the LC1 for rainbow trout (Oncorhynchus mykiss) from W.J. Birge, J.A. Black, Report No. EPA5601176408. Environmental Protection Agency, Office of Toxic Substances, Washington, DC, 1977, as the LC1 from their studies provided the lowest chronic toxicity values for boron. Other studies by these investigators (W.J. Birge, J.A. Black, Completion Report prepared for the Procter & Gamble Company, Cincinnati, USA, 1981; W.J. Birge, J.A. Black, A.G. Westermann, T.M. Short, S.B. Taylor, M.C. Parekh. Completion Report prepared for the Procter & Gamble Company, Cincinnati, USA, 1984; J.A. Black, J.B. Barnum, W.J. Birge, Chemosphere 26 (1993) 1383-1413) further indicate this species to be particularly sensitive to boron. While weight of the evidence approaches have been necessary for diverse risk assessment needs, they each suffer from potential bias via professional judgment. In order to allay these issues and to update the effects assessment for boron, a probabilistic approach was used. Raw data from the Birge and Black studies were reanalyzed to generate chronic values representative of the adverse effects threshold (e.g., LC10) for several species. A comprehensive list of chronic data from these studies and other studies were combined into a cumulative probability term, allowing for the determination of the fifth percentile protection value, or PNEC0.05. The PNEC0.05 for boron was determined to be at least 1.3 mg B/l.  相似文献   

8.
Metal oxide nanomaterials have exhibited toxicity to a variety of aquatic organisms, especially microbes and invertebrates. To date, few studies have evaluated the toxicity of metal oxide nanomaterials on aquatic vertebrates. Therefore, this study examined effects of ZnO, TiO2, Fe2O3, and CuO nanomaterials (20-100 nm) on amphibians utilizing the Frog Embryo Teratogenesis Assay Xenopus (FETAX) protocol, a 96 h exposure with daily solution exchanges. Nanomaterials were dispersed in reconstituted moderately hard test medium. These exposures did not increase mortality in static renewal exposures containing up to 1000 mg L−1 for TiO2, Fe2O3, CuO, and ZnO, but did induce developmental abnormalities. Gastrointestinal, spinal, and other abnormalities were observed in CuO and ZnO nanomaterial exposures at concentrations as low as 3.16 mg L−1 (ZnO). An EC50 of 10.3 mg L−1 ZnO was observed for total malformations. The minimum concentration to inhibit growth of tadpoles exposed to CuO or ZnO nanomaterials was 10 mg L−1. The results indicate that select nanomaterials can negatively affect amphibians during development. Evaluation of nanomaterial exposure on vertebrate organisms are imperative to responsible production and introduction of nanomaterials in everyday products to ensure human and environmental safety.  相似文献   

9.
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg−1 respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6 d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health.  相似文献   

10.
Ecotoxicity evaluation of selected sulfonamides   总被引:6,自引:0,他引:6  
Sulfonamides (SAs) are a group of antibiotic drugs widely used in veterinary medicine. The contamination of the environment by these pharmaceuticals has raised concern in recent years. However, knowledge of their (eco)toxicity is still very basic and is restricted to just a few of these substances. Even though their toxicological analysis has been thoroughly performed and ecotoxicological data are available in the literature, a systematic analysis of their ecotoxicological potential has yet to be carried out. To fill this gap, 12 different SAs were chosen for detailed analysis with the focus on different bacteria as well as non-target organisms (algae and plants). A flexible (eco)toxicological test battery was used, including enzymes (acetylcholinesterase and glutathione reductase), luminescent marine bacteria (Vibrio fischeri), soil bacteria (Arthrobacter globiformis), limnic unicellular green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor), in order to take into account both the aquatic and terrestrial compartments of the environment, as well as different trophic levels. It was found that SAs are not only toxic towards green algae (EC50 = 1.54-32.25 mg L−1) but have even stronger adverse effect on duckweed (EC50 = 0.02-4.89 mg L−1) than atrazine - herbicide (EC50 = 2.59 mg L−1).  相似文献   

11.
Guidelines for copper in sediments with varying properties   总被引:1,自引:0,他引:1  
A major weakness of sediment quality guidelines (SQGs) is their poor ability to predict how toxicity thresholds change for different sediment types. Using species sensitivity distributions (SSDs) of copper effects data, new guidelines were derived for copper in non-sulfidic marine sediments in which organic carbon (OC) and particle size strongly influence copper bioavailability. The derived SQGs varied in a predictable manner with changes in sediment particle size and organic carbon (OC), and were shown to offer a significant improvement on the existing ‘single value’ SQG. Adequate protection for all benthic organisms is expected to be achieved for a OC-normalised copper concentration of 3.5 mg Cu g−1 OC in the <63 μm sediment fraction. For short-term exposures, the equivalent acute guideline is 11 mg < 63 μm Cu g−1 OC. The new SQGs incorporate a high degree of conservatism owing to the use of copper-spiked sediments and laboratory-based bioassays that were expected to result in greater metal exposure of organisms to bioavailable copper than would be expected for field-contaminated sediments with similar total copper concentrations. SQGs that vary with sediment properties were prepared in an easily referenced tabular format.  相似文献   

12.
Mikac I  Fiket Z  Terzić S  Barešić J  Mikac N  Ahel M 《Chemosphere》2011,84(8):1140-1149
The anthropogenic impact on the pristine karst lakes was investigated using combination of specific parameters, including multielemental analysis of major inorganic constituents (Al, K, Fe) and trace metals (Li, Ag, Cd, Sn, Pb, Bi, Cr, Co, Ni, Cu, Zn and Sb), polycyclic aromatic hydrocarbons (PAHs) and anionic surfactants of linear alkylbenzene sulfonate (LAS) type. The study was performed in the Plitvice Lakes National Park, situated in a sparsely populated area of the northwestern Dinarides, central Croatia. Dated cores of recent sediments from the two biggest lakes, Lake Prosce and Lake Kozjak, were analysed for the selected contaminants using highly specific methods, involving inductively coupled plasma mass spectrometry (ICP/MS), gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). The concentration of inorganic constituents reflected primarily the geological background of the area as well as geomorphological and geochemical characteristics of the Plitvice Lakes. Due to the higher terrigenous input, the concentration of all elements was significantly higher in the Lake Prosce. The concentration of toxic metals was relatively low in both lakes, except for Cd (>1 mg kg−1) and Pb (up to 40 mg kg−1). The vertical profiles of these metals suggested that elevated concentrations of Cd were of natural origin, derived from the erosion of the Jurassic dolomite bedrock, while Pb was predominately of recent anthropogenic origin. A similar distribution pattern, suggesting the same prevailing mechanism of input, was observed for pyrolytic PAHs. The characteristic diagnostic PAH ratios revealed that higher PAHs prevailingly originated from the combustion of biomass and fossil fuels. LAS, which represent highly specific indicators of untreated wastewaters, were found in rather high concentrations in the recent sediment layers (up to 4.7 mg kg−1), suggesting that contaminated household and hotel wastewaters reach the Lakes, very probably by leaking through the porous karst rocks.  相似文献   

13.
Short-term 48, 72 and 96-h aquatic toxicity tests were conducted to evaluate the acute toxicity of eight fluorinated acids to the cladoceran, Daphnia magna, the green alga, Pseudokirchneriella subcapitata, and the rainbow trout, Oncorhynchus mykiss or the fathead minnow, Pimephales promelas. The eight fluorinated acids studied were tridecafluorohexyl ethanoic acid (6:2 FTCA), heptadecafluorooctyl ethanoic acid (8:2 FTCA), 2H-dodecafluoro-2-octenoic acid (6:2 FTUCA), 2H-hexadecafluoro-2-decenoic acid (8:2 FTUCA), 2H,2H,3H,3H-undecafluoro octanoic acid (5:3 acid), 2H,2H,3H,3H-pentadecafluoro decanoic acid (7:3 acid), n-perfluoropentanoic acid (PFPeA) and n-perfluorodecanoic acid (PFDA). The results of the acute toxicity tests conducted during this study suggest that the polyfluorinated acids, 8:2 FTCA, 8:2 FTUCA, 6:2 FTCA, 6:2 FTUCA, 7:3 acid and 5:3 acid, and the perfluorinated acids PFPeA and PFDA, are generally of low to medium concern based on evaluation of their acute freshwater toxicity (EC/LC50s typically between 1 and >100 mg L−1) using the USEPA TSCA aquatic toxicity evaluation paradigm. For the polyfluorinated acids, aquatic toxicity generally decreased as the number of fluorinated carbons decreased and as the overall carbon chain length decreased from 12 to 8. Acute aquatic toxicity of the 5 and 10 carbon perfluorocarboxylic acids (EC/LC50s between 10.6 and >100 mg L−1) was greater or similar to that of the 6-9 carbon perfluorocarboxylic acids (EC/LC50s > 96.5 mg L−1). This study also provides the first report of the acute aquatic toxicity of the 5:3 acid (EC/LC50s of 22.5 to >103 mg L−1) which demonstrated less aquatic toxicity than the 7:3 acid (EC/LC50s of 0.4-32 mg L−1). The cladoceran, D. magna and the green alga, P. subcapitata had generally similar EC50 values for a given substance while fish were typically equally or less sensitive with the exception that PFPeA was most toxic to fish. Predicted no-effect concentrations (PNECs) were estimated using approaches consistent with REACH guidance and when compared with available environmental concentrations, these PNECs suggest that the fluorinated acids tested pose little risk for aquatic organisms.  相似文献   

14.
Phthalocyanines are prospective chemicals that have applications in industry, medicine and biology due especially to their architectural flexibility and production of reactive oxygen species. Although they are used in so many areas of human activities nowadays, there is still little knowledge of their ecotoxicity. Here we present the first observation of their toxic effects on representatives of the aquatic plants Lemna minor. The tested phthalocyanines possess a wide spectrum of phytotoxicity ranging from seldom (>50 mg L−1) to highly toxic 0.11 mg L−1. Moreover, the potential of phthalocyanines to be used as selective cyanocides or herbicides is discussed as well.  相似文献   

15.
Láng J  Kőhidai L 《Chemosphere》2012,89(5):592-601
An increasing attention is paid to the potential harmful effects of aquatic contaminant pharmaceuticals exerted on both biosystems and humans. In the present work the effects of 14 pharmaceuticals including NSAIDs, antibiotics, β-blockers and a frequently used X-ray contrast media on the proliferation and migratory behavior of the freshwater ciliate Tetrahymena pyriformis was investigated. Moreover, the mixture toxicity of four selected pharmaceuticals (diclofenac, ibuprofen, metoprolol and propranolol) was evaluated in binary mixtures using full factorial experimental design. Our results showed that the sensitivity of Tetrahymena to NSAIDs and β-blockers (EC50 ranged from 4.8 mg L−1 to 308.1 mg L−1) was comparable to that of algal or Daphnia bioassays. Based on these elevated EC50 values acute toxic effects of these pharmaceuticals to T. pyriformis are unlikely. Antibiotics and the contrast agent sodium-diatrizoate had no proliferation inhibiting effect. Chemotactic response of Tetrahymena was more sensible than proliferation as significant chemorepellent action was observed in the environmentally realistic concentration range for acetylsalicylic acid, diclofenac, fenoprofen, paracetamol, metoprolol, propranolol, timolol and trimethoprim (Chemotaxis Index ranged from 63% to 88%).Mixture toxicity experiments resulted in a complex, concentration dependent interaction type pattern with antagonism being the predominant interaction type (59%) followed by additivity (37%) and synergism (4%). Hence the concept of concentration addition validated for NSAIDs in other organisms cannot be adopted for this ciliate.In summary authors suggest Tetrahymena as a sensible model of testing aquatic contaminants as well as underline the significance using more specific endpoints to understand the complex mechanisms investigated.  相似文献   

16.
Yi AX  Leung KM  Lam MH  Lee JS  Giesy JP 《Chemosphere》2012,89(9):1015-1025
The state of scientific knowledge regarding analytical methods, environmental fate, ecotoxicity and ecological risk of triphenyltin (TPT) compounds in marine ecosystems as well as their exposure and health hazard to humans was reviewed. Since the 1960s, TPT compounds have been commonly applied as biocides for diverse industrial and agricultural purposes. For instance, they are used as active ingredients in antifouling systems on marine vessels and mariculture facilities, and as fungicides in agriculture. Due to their intensive use, contamination of coastal waters by TPT and its products of transformation has become a worldwide problem. The proportion of quantified TPT to total phenyltin compounds in the marine environment provides evidence that TPT is photodegradable in water and sediment but resistant to biotransformation. Concentrations of TPT in marine biota are consistently greater than concentrations in water and sediment, which implies potential of TPT to bioaccumulate. TPT is toxic to both marine plants and animals. The predicted no effect concentration (PNEC) for TPT, as determined by use of the species sensitivity distribution approach, is 0.64 ng L−1. In some parts of the world, concentrations of TPT in seawater exceed the PNEC, indicating that TPT can pose risks to marine life. Although there is negligible risk of TPT to average human consumers, TPT has been detected in blood of Finnish people and the concentration was greater in fishermen who ate more seafood. It is, therefore, advocated to initiate regular monitoring of TPT in blood and breast milk of populations that consume greater amounts of seafood.  相似文献   

17.
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1 mL L−1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7 d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7 d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota.  相似文献   

18.
Azizullah A  Richter P  Häder DP 《Chemosphere》2011,84(10):1392-1400
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC50 values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC50 values of 10.8 and 34 mg L−1, respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L−1 and above while chlorophyll b significantly decreased at concentrations above 750 mg L−1. The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure.  相似文献   

19.
Suspended particles are a natural component of aquatic ecosystems. This study provides a report on the survival, growth and reproduction of common-scale and nanoscale particles of Daphnia magna Straus exposed to five types of particles (i.e. KN (kaolinite), MN (montmorillonite), MNn (nanoscale MN), NP (natural particles), and NPn (nanoscale NP)). The results of the study show that the suspended particles elicited a dose-dependent toxicity in KN, MN and MNn, with the following toxicity pattern: MN > KN > MNn. On the contrary, NP and NPn did not show any harmful effects on the animals. Instead, NP and NPn, especially NPn, contributed to the survivorship of the animals. The animals were able to survive throughout the 21-day period of bioassays, and when the particle concentration reached 600 mg L−1, they produced many neonates without any addition of food. This experimental results also indicated that the nanoscale particles were less toxic than the common-scale ones, both for MN and NP. Moreover, the results of the 21-day period of bioassays indicated that when the organisms were exposed to particles of different size scales, they showed different selection patterns for allocating resources. This may be due to the generation of different assimilation and digestion patterns.  相似文献   

20.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号