首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylation of bisphenol A by freshwater microalgae   总被引:1,自引:0,他引:1  
The endocrine disruptor bisphenol A (BPA, 4,4'-isopropylidenediphenol) is used to manufacture polycarbonate plastic and epoxy resin linings of food and beverage cans, and the residues from these products are then sometimes discharged into rivers and lakes in waste leachates. However, the fate of BPA in the environment has not yet been thoroughly elucidated. Considering the effect of BPA on aquatic organisms, it is important that we estimate the concentration of BPA and its metabolites in the aquatic environment, but there are few data on the metabolites of BPA. Here, we focused on freshwater microalgae as organisms that contribute to the biodegradation or biotransformation of BPA in aquatic environments. When we added BPA to cultures of eight species of freshwater microalgae, a reduction in the concentration of BPA in the culture medium was observed in all cultures. BPA was metabolized to BPA glycosides by Pseudokirchneriella subcapitata, Scenedesmus acutus, Scenedesmus quadricauda, and Coelastrum reticulatum, and these metabolites were then released into the culture medium. The metabolite from P. subcapitata, S. acutus, and C. reticulatum was identified by FAB-MS and (1)H-NMR as bisphenol A-mono-O-beta-d-glucopyranoside (BPAGlc), and another metabolite, from S. quadricauda, was identified as bisphenol A-mono-O-beta-d-galactopyranoside (BPAGal). These results demonstrate that freshwater microalgae that inhabit universal environments can metabolize BPA to its glycosides. Because BPA glycosides accumulate in plants and algae, and may be digested to BPA by beta-glycosidase in animal intestines, more attention should be given to levels of BPA glycosides in the environment to estimate the ecological impact of discharged BPA.  相似文献   

2.
Bisphenol A (BPA) is one of the representative compounds of the endocrine disrupting compounds group and the highest volume chemicals produced worldwide. As a result, BPA is often detected in many soil and water environments. In this study, we demonstrated the transformation of BPA from liquid cultures inoculated with hyper lignin-degrading fungus Phanerochaete sordida YK-624. Under non-ligninolytic condition, approximately 80% of BPA was eliminated after 7 d of incubation. High-resolution electrospray ionization mass spectra and nuclear magnetic resonance analyses of a metabolite isolated from the culture supernatant suggested that BPA was metabolized to hydroxy-BPA, 4-(2-(4-hydroxyphenyl)propan-2-yl)benzene-1,2-diol, which has a much lower estrogenic activity than BPA. In addition, we investigated the effect of the cytochrome P450 inhibitor piperonyl butoxide (PB) on the hydroxylation of BPA, markedly lower transformation activity of BPA was observed in cultures containing PB. These results suggest that cytochrome P450 plays an important role in the hydroxylation of BPA by P. sordida YK-624 under non-ligninolytic condition.  相似文献   

3.
The metabolism of phenanthrene was studied both in cell suspension cultures of wheat (Triticum aestivum) and soybean (Glycine max), and in intact plants of the water mossFontinalis antipyretica. Metabolism in cell suspension cultures strongly differed between the monocotyle and the dicotyle plant. Only small amounts oftrans-phenanthrene-9,10-dihydrodiole and phenanthrene-9,10-dione were detectable in the wheat culture. Soybean cultures, in contrast demonstrated a strong turnover resulting in a 75% reduction of the initial phenanthrene concentration. Metabolites were phenanthrene-9,10-dione, not further characterized polar metabolites and bound residues. Intact plants ofFontinalis antipyretica metabolized only small amounts of phenanthrene. Data obtained from cell cultures did not provide information for the metabolic potential in intact plants. Therefore standardized tests with model systems like suspension cultures lead to inadequate assessment of the ecological risk of certain xenobiotics.  相似文献   

4.
Proton nuclear magnetic resonance (1H-NMR) spectroscopy was used to study the response of zebrafish (Danio rerio) to increasing concentrations of bisphenol A (4,4′-(propane-2,2-diyl)diphenol, BPA). Orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to detect aberrant metabolomic profiles after 72 h of BPA exposure at all levels tested (0.01, 0.1, and 1.0 mg/L). The OPLS-DA score plots showed that BPA exposure caused significant alterations in the metabolome. The metabolomic changes in response to BPA exposure generally exhibited nonlinear patterns, with the exception of reduced levels of several metabolites, including glutamine, inosine, lactate, and succinate. As the level of BPA exposure increased, individual metabolite patterns indicated that the zebrafish metabolome was subjected to severe oxidative stress. Interestingly, ATP levels increased significantly at all levels of BPA exposure. In the present study, we demonstrated the applicability of 1H-NMR-based metabolomics to identify the discrete nature of metabolic changes.  相似文献   

5.
The metabolism of the environmental estrogen bisphenol A (BPA) was studied in heterotrophic plant cell suspension cultures of soybean (Glycine max), wheat (Triticum aestivum), foxglove (Digitalis purpurea), and thorn apple (Datura stramonium), which were regarded as metabolic model systems for intact plants. Three main metabolic routes of BPA were observed in the tissues. Most of the radioactivity found in the cell extracts consisted of carbohydrate conjugates of BPA amounting to about 85% (foxglove), 80% (wheat), 7% (soybean) and 15% (thorn apple) of applied 14C. The second main route was formation of non-extractable residues. Portions detected were low in foxglove (3.9% of applied 14C), moderate in wheat (13.5%), high in thorn apple (27.4%) and soybean (49.4%). With thorn apple, BPA derived bound residues were preponderantly resistant towards acid treatment; only traces of BPA were released. The third route was the formation of a highly polar, presumably polymeric material detected in media of soybean and thorn apple (29.3% and 36.0% of applied 14C, respectively). The mechanism of its formation remained unknown. In thorn apple, this highly polar material was formed extremely rapidly, and was considerably stable. Only traces of BPA were liberated by hydrolytic treatment with cellulase or acid. During hydrolysis experiments with glycoside fractions, non-extractable residues and highly polar materials, low amounts of presumably primary metabolites of BPA (up to 6% of applied 14C) were detected besides the parent compound; their chemical structures remained unclear.  相似文献   

6.
Bisphenol A (BPA) and nonylphenols (NP) are of major concern to public health due to their high potential for human exposure and to their demonstrated toxicity (endocrine disruptor effect). A limited number of studies have shown that BPA and NP are present in drinking water. The chlorinated derivatives that may be formed during the chlorination step in drinking water treatment plants (DWTP) exhibit a higher level of estrogenic activity than their parent compounds. The aim of this study was to investigate BPA, 353NP, and their chlorinated derivative concentrations using an accurate and reproducible method of quantification. This method was applied to both surface and treated water samples from eight French DWTPs producing from surface water. Solid-phase extraction followed by liquid chromatography?Ctandem mass spectrometry was developed in order to quantify target compounds from water samples. The limits of detection ranged from 0.3 to 2.3?ng/L for BPA and chlorinated BPA and from 1.4 to 63.0?ng/L for 353NP and chlorinated 353NP. BPA and 353NP were found in most analyzed water samples, at a level ranging from 2.0 to 29.7?ng/L and from 0 to 124.9?ng/L, respectively. In most of DWTPs a decrease of BPA and 353NP was observed between surface water and treated water (36.6 to 78.9?% and 2.2 to 100.0?% for BPA and 353NP, respectively). Neither chlorinated BPA nor chlorinated 353NP was detected. Even though BPA and 353NP have been largely removed in the DWTPs studied, they have not been completely eliminated, and drinking water may consequently remain a source of human exposure.  相似文献   

7.
In the present study the biotransformation of phenanthrene in the rat and guinea pig was investigated. 14C-labelled phenanthrene was administered by gavage in corn oil to Sprague-Dawley rats (10 mg/kg b.w./day) and guinea pigs (10 mg/kg b.w./day). Urine and feces were separately collected for the determination of the radioactivity content, and pooled urine was used for the analysis of metabolites. Phenanthrene was metabolized by the rat and guinea pig to free hydroxylated phenanthrenes and their conjugates. The percentages of conjugates, expressed as the total urinary radioactivity, were 39% glucuronides, 24% sulfates and 18% cysteinylglycine for rats; and 39% glucuronides, 23% sulfates and 28% cysteinylglycine for guinea pigs. Enzymatic hydrolysis of glucuronides and sulfates resulted in the formation of free 1,2-, 3,4- and 9,10-dihydrodiols of phenanthrene and 1-, 2-, 3-, and 4-hydroxyphenanthrene in both species.  相似文献   

8.
The metabolism of phenanthrene and the mammalian corticosteroid hormone cortexolone by the fungus Cunninghamella elegans was studied. The amounts of the cortexolone transformation products, cortisol and epicortisol, were affected by the presence of phenanthrene. Approximately 40% more cortisol was produced by C. elegans in cultures with phenanthrene. In contrast, epicortisol formation decreased. C. elegans transformed phenanthrene to phenanthrene trans-1,2-,3,4-, and 9,10-dihydrodiols, phenols, diphenols (diols) and glucoside conjugates of 1-, 2-, 3-, 4-, and 9-phenanthrols. Almost all of the phenanthrene initially added was metabolized to ethyl acetate extractable metabolites. In the mycelia and culture medium extracts, phenanthrol glucosides represented 80% and 94% of the total metabolites, respectively. The major metabolite was the glucoside conjugate of 1-phenanthrol. The presence of cortexolone affected the biodegradation of phenanthrene by decreasing the amounts of phenanthrene metabolites compared to control cultures.  相似文献   

9.
In this study, the presence of bisphenol A (BPA) in human placental and fetal liver samples collected from 1998 to 2008 was investigated to provide a more detailed analysis of the transfer of BPA across the placenta and fetal exposure to BPA. The average concentrations in placental samples were 12.6 ng g−1 for free BPA, 17.2 ng g−1 for BPA-glu, and 30.2 ng g−1 for total BPA. The highest concentrations in placental samples were 165 ng g−1 for free BPA, 178 ng g−1 for BPA-glu, and 280 ng g−1 for total BPA. Samples with higher levels of BPA-glu had higher levels of free BPA in general. Fetal age was observed to have a significant effect on BPA-glu levels in placental samples, but not on free or total BPA. The percentages of free BPA relative to total BPA for the placental samples varied considerably from 4.2% to 100%, suggesting that the ability of maternal liver and/or the placenta to conjugate BPA is highly variable during early to mid-gestation. The average concentrations in fetal liver samples were 9.02 ng g−1 for free BPA, 19.1 ng g−1 for BPA-glu, and 25.8 ng g−1 for total BPA. The highest concentrations in fetal liver samples were 37.7 ng g−1 for free BPA, 93.9 ng g−1 for BPA-glu, and 123 ng g−1 for total BPA. The percentages of free BPA level relative to total BPA for all fetal liver samples varied from 12.4% to 99.1%, indicating extensive variability in the ability of the human feto-placental unit to glucuronidate BPA.  相似文献   

10.
Geens T  Neels H  Covaci A 《Chemosphere》2012,87(7):796-802
In this study, an analytical method was optimized for the determination of bisphenol-A (BPA), triclosan (TCS) and 4-n-nonylphenol (4n-NP), environmental contaminants with potential endocrine disruptive activities, in human tissues. The method consisted of a liquid extraction step, derivatization with pentafluorobenzoylchloride followed by a clean-up on acidified silica and detection with gas chromatography coupled with mass spectrometry (GC-ECNI/MS). Recoveries ranged between 92% and 102% with a precision below 5%. Limits of quantification ranged between 0.3-0.4 ng g−1, 0.045-0.06 ng g−1 and 0.003-0.004 ng g−1 for BPA, TCS and 4n-NP in different tissues, respectively. The method was applied for the determination of BPA, TCS and 4n-NP in paired adipose tissue, liver and brain samples from 11 individuals. BPA could be detected in almost all tissues, with the highest concentrations found in adipose tissue (mean 3.78 ng g−1), followed by liver (1.48 ng g−1) and brain (0.91 ng g−1). TCS showed the highest concentrations in liver (3.14 ng g−1), followed by adipose tissue (0.61 ng g−1), while it could be detected in only one brain sample. Levels of 4n-NP were much lower, mostly undetected, and therefore 4n-NP is considered of minor importance for human exposure. Despite the measurable concentrations in adipose tissue, these compounds seem to have a low bioaccumulation potential. The reported concentrations of free BPA in the various tissues are slight disagreement with pharmacokinetic models in humans and rats and therefore the possibility of external contamination with BPA during sample collection/storage cannot be ruled out.  相似文献   

11.

In the present investigation, the oxidative metabolism of 14C-labeled metamitron was examined in plant cell cultures of tobacco overexpressing human P450 enzymes CYP1A1 or CYP1A2; special interest was in the aromatic hydroxylation of the herbicide. The oxidative metabolites deaminometamitron (DAM) and 4-hydroxydeaminometamitron (4-HDAM) were found in the untransformed control culture as well as in the transgenic culture. The transgenic cultures, however, exhibited higher turnover rates after 48 h of incubation with 20 μg 14C-metamitron per assay (untransformed: 40%, CYP1A1: 80%, CYP1A2: 100%). Primary metabolite 4-HDAM was partially found in glucosylated form in the transgenic cultures. As minor oxidative metabolites, 6-hydroxyphenyl-3-methoxymethyl-1,2,4-triazine-5(4H)-one and 3-hydroxymethyl-6-phenyl-1,2,4-triazine-5(4H)-one were identified in the transgenic cultures by GC-MS, LC-MS. Additionally, it could be demonstrated that both foreign enzymes (CYP1A1, CYP1A2) also catalyzed the deamination of metamitron. In a large-scale study (up to 400 μ g per assay) with the transgenic culture expressing CYP1A2, the high efficiency of this P450 system toward metamitron was demonstrated: turnover of the xenobiotic was almost complete with 400 μ g. Since large portions of unglucosylated 4-H-DAM were found, the activity of foreign CYP1A2 apparently exceeded that of endogenous O-glucosyltransferases of the tobacco cell culture. We concluded that in comparison to the nontransformed cell culture, the extent of metabolism was considerably higher in the transgenic cultures. The transgenic cell cultures expressing human CYP1A1 or CYP1A2 are thus suitable tools for the production of large quantities of primary oxidized metabolites of metamitron.  相似文献   

12.
Exposure to endocrine disrupting chemicals such as bisphenol A (BPA) and phthalates is prevalent among children and adolescents, but little is known regarding important sources of exposure at these sensitive life stages. In this study, we measured urinary concentrations of BPA and nine phthalate metabolites in 108 Mexican children aged 8–13 years. Associations of age, time of day, and questionnaire items on external environment, water use, and food container use with specific gravity-corrected urinary concentrations were assessed, as were questionnaire items concerning the use of 17 personal care products in the past 48-h. As a secondary aim, third trimester urinary concentrations were measured in 99 mothers of these children, and the relationship between specific gravity-corrected urinary concentrations at these two time points was explored. After adjusting for potential confounding by other personal care product use in the past 48-h, there were statistically significant (< 0.05) positive associations in boys for cologne/perfume use and monoethyl phthalate (MEP), mono(3-carboxypropyl) phthalate (MCPP), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), and in girls for colored cosmetics use and mono-n-butyl phthalate (MBP), mono(2-ethylhexyl) phthalate (MEHP), MEHHP, MEOHP, and mono(2-ethyl-5-carboxypentyl) phthalate (MECPP), conditioner use and MEP, deodorant use and MEP, and other hair products use and MBP. There was a statistically significant positive trend for the number of personal care products used in the past 48-h and log-MEP in girls. However, there were no statistically significant associations between the analytes and the other questionnaire items and there were no strong correlations between the analytes measured during the third trimester and at 8–13 years of age. We demonstrated that personal care product use is associated with exposure to multiple phthalates in children. Due to rapid development, children may be susceptible to impacts from exposure to endocrine disrupting chemicals; thus, reduced or delayed use of certain personal care products among children may be warranted.  相似文献   

13.
Two synthetic superabsorbent crosslinked acrylic polymers were mineralized by the white-rot fungusPhanerochaete chrysosporium. The amount of polymer converted to CO2 increased as the amount of polymer added to the cultures increased. In the presence of sufficiently large amounts of the superabsorbents, such that all of the culture fluid was absorbed and a gelatinous matrix was formed, the fungus still grew and mineralization was observed. Neither the polymers, nor their degradation products were toxic to the fungus. While the rates of mineralization were low, all of the polymers incubated in the liquid fungal cultures were completely depolymerized to water soluble products within 15–18 days. The depolymerization of the polymers was observed only in nitrogen limited cultures of the fungus which secrete the lignin degradation system, however, the water soluble products of depolymerization were mineralized in both nutrient limited and sufficient cultures of the fungus. The rate of mineralization of the depolymerized metabolites was more than two times greater in nutrient sufficient cultures. Following longer incubation periods, most (> 80 %) of the radioactivity was recovered in the fungal mycelial mat suggesting that carbon of the polymer had been converted to fungal metabolites.  相似文献   

14.
The present study was conducted to systematically review, analyze, and interpret all the relevant evidence in the literature on the possible link between exposure to bisphenol A (BPA) and the risk of type-2 diabetes mellitus (T2DM). We developed a comprehensive search strategy and used it to search Web of Science, Scopus, PubMed, and Google Scholar up to March 31, 2016, producing 3108 hits, of which 13 original papers were included. Findings of these studies were quite controversial; few studies indicated a significant positive association between BPA exposure and T2DM, while some other failed to detect such a relationship. Overall, it can be suggested that chance is unlikely the plausible explanation for the observed association between BPA exposure and T2DM. This was mainly because even in the negative studies some clues could be found in favor of a statistically significant relationship between BPA and T2DM. Additionally, some of the studies had shortcomings in defining the exposure and outcome measures, which, if present, might have led to underestimating the relationship between BPA exposure and T2DM. The theoretical plausibility of such a relationship found earlier in animal studies also supports this point. However, more definitive answer requires the conduct of future longitudinal studies, in which the possible association between BPA exposure and T2DM is assessed over much longer periods of time with more temporally robust BPA measurements. In addition, it would be quite beneficial if future studies be conducted in areas where data is still lacking (e.g., South America, Australia/Oceania, and Europe).
Graphical abstract ?
  相似文献   

15.
In the present investigation, the oxidative metabolism of 14C-labeled metamitron was examined in plant cell cultures of tobacco overexpressing human P450 enzymes CYP1A1 or CYP1A2; special interest was in the aromatic hydroxylation of the herbicide. The oxidative metabolites deaminometamitron (DAM) and 4-hydroxydeaminometamitron (4-HDAM) were found in the untransformed control culture as well as in the transgenic culture. The transgenic cultures, however, exhibited higher turnover rates after 48 h of incubation with 20 microg 14C-metamitron per assay (untransformed: 40%, CYP1A1: 80%, CYP1A2: 100%). Primary metabolite 4-HDAM was partially found in glucosylated form in the transgenic cultures. As minor oxidative metabolites, 6-hydroxyphenyl-3-methoxymethyl-1,2,4-triazine-5(4H)-one and 3-hydroxymethyl-6-phenyl-1,2,4-triazine-5(4H)-one were identified in the transgenic cultures by GC-MS, LC-MS. Additionally, it could be demonstrated that both foreign enzymes (CYP1A1, CYP1A2) also catalyzed the deamination of metamitron. In a large-scale study (up to 400 microg per assay) with the transgenic culture expressing CYP1A2, the high efficiency of this P450 system toward metamitron was demonstrated: turnover of the xenobiotic was almost complete with 400 microg. Since large portions of unglucosylated 4-H-DAM were found, the activity of foreign CYP1A2 apparently exceeded that of endogenous O-glucosyltransferases of the tobacco cell culture. We concluded that in comparison to the nontransformed cell culture, the extent of metabolism was considerably higher in the transgenic cultures. The transgenic cell cultures expressing human CYP1A1 or CYP1A2 are thus suitable tools for the production of large quantities of primary oxidized metabolites of metamitron.  相似文献   

16.

This work reports the use of a cross-linked ureasil–PEO hybrid matrix (designated PEO800) as an efficient adsorbent to retain the emerging contaminant bisphenol A (BPA) from an aqueous medium. The in-deep experimental and theoretical results provide information about the interactions between PEO800 and BPA. The in situ UV-vis spectroscopy data and the pseudo-first order, pseudo-second order, Elovich, and Morris–Webber intraparticle diffusion models allowed us to propose a three-step mechanism for the adsorption of BPA onto PEO800. The results indicate that the pseudo-first-order kinetic model effectively describes the adsorption of BPA onto PEO800. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy confirmed the interaction of PEO800 with BPA, showing an alteration in the chemical environment of the polymer ether oxygen atoms present in the hybrid matrix. The molecular dynamic simulation provides further evidence that the BPA molecules interact preferentially with PEO. The amount of desorbed BPA depended on the pH and solvent used in the assays. This work provides new opportunities for using the hydrophilic ureasil–PEO matrix which has demonstrated its abilities in being a fast and easy alternative to successfully removing organic contaminants from aqueous mediums and therefore having potential applications in water remediation.

Graphical abstract

  相似文献   

17.
The metabolism of 14C-clodinafop-propargyl (CfP) was examined in cell cultures of wheat (Triticum aestivum L. cv. ‘Heines Koga II’) and tobacco (Nicotiana tabacum L.). Besides the non-transgenic tobacco culture, cultures transformed separately with cDNA of human cytochrome P450-monooxygenases (P450s) CYP1A1, CYP1A2, CYP3A4, CYP2B6 and CYP2C19 were examined. Experiments with wheat were executed in the presence and absence of safener cloquintocet-mexyl (CqM). After 48 h of incubation, only about 10% of applied 14C was found in media (both tobacco and wheat). Non-extractable residues of 14C-CfP in wheat cells were 16.54% (without CqM) and 30.87% (with CqM). In all tobacco cultures, 82.41–92.46% of applied radioactivity was recovered in cell extracts. In contrast to wheat, non-extractable residues amounted only to 1.50–2.82%. As determined by radio-thin layer chromatography (TLC) and -high-performance liquid chromatography (HPLC), the parent CfP was not found in the cell extracts of wheat; in tobacco cell extracts, only traces of CfP were detected. After a hydrolysis of assumed carbohydrate conjugates of CfP derived polar 14C-labeled compounds, TLC and HPLC analysis showed that in wheat, a more complex pattern of metabolites of CfP were observed as compared to all tobacco cultures. In hydrolysates resulting from wheat, the identity of three primary products was confirmed by means of GC-EI-MS: free acid clodinafop (Cf), hydroxy-Cf hydroxylated at the pyridinyl moiety, and 4-(5-chloro-3-fluoropyridin-2-yloxy)phenol. In hydrolysates derived from all tobacco cultures, main metabolite was Cf besides only traces of further unidentified products. Differences among the different tobacco cultures (non-transgenic, transgenic) did not emerge. According to kinetics of disappearance of primary metabolite Cf as well as formation of polar soluble products and non-extractable residues, metabolization of CfP proceeded at a noticeably higher rate in wheat cells treated with safener CqM than in cells without CqM treatment. Thus, these results indicated a stimulation of CfP's metabolism by CqM, although metabolic profiles observed in CqM treated and non-treated cells (after hydrolysis) were qualitatively similar. The findings obtained from all tobacco cultures suggested that with the exception of ester cleavage to Cf, CfP cannot be metabolized by tobacco itself or by the human P450s examined.  相似文献   

18.
Seventy eight out of the 209 possible polychlorinated biphenyl (PCB) congeners are chiral, 19 of which exist under ambient conditions as stable rotational isomers that are non-superimposable mirror images of each other. These congeners (C-PCBs) represent up to 6 % by weight of technical PCB mixtures and undergo considerable atropisomeric enrichment in wildlife, laboratory animals, and humans. The objective of this review is to summarize our current knowledge of the processes involved in the absorption, metabolism, and excretion of C-PCBs and their metabolites in laboratory animals and humans. C-PCBs are absorbed and excreted by passive diffusion, a process that, like other physicochemical processes, is inherently not atropselective. In mammals, metabolism by cytochrome P450 (P450) enzymes represents a major route of elimination for many C-PCBs. In vitro studies demonstrate that C-PCBs with a 2,3,6-trichlorosubstitution pattern in one phenyl ring are readily oxidized to hydroxylated PCB metabolites (HO-PCBs) by P450 enzymes, such as rat CYP2B1, human CYP2B6, and dog CYP2B11. The oxidation of C-PCBs is atropselective, thus resulting in a species- and congener-dependent atropisomeric enrichment of C-PCBs and their metabolites. This atropisomeric enrichment of C-PCBs and their metabolites likely plays a poorly understood role in the atropselective toxicity of C-PCBs and, therefore, warrants further investigation.  相似文献   

19.
BACKGROUND: In 1996, the Committee on the Assessment of Wartime Exposure to Herbicides in Vietnam of the National Academy of Sciences' Institute of Medicine (IOM) issued a report on an exposure model for use in epidemiological studies of Vietnam veterans. This exposure model would consider troop locations based on military records; aerial spray mission data; estimated ground spraying activity; estimated exposure opportunity factors; military indications for herbicide use; and considerations of the composition and environmental fate of herbicides, including changes in the TCDD content of the herbicides over time, the persistence of TCDD and herbicides in the environment, and the degree of likely penetration of the herbicides into the ground. When the final report of the IOM Committee was released in October 2003, several components of the exposure model envisioned by the Committee were not addressed. These components included the environmental fate of the herbicides, including changes in the TCDD content over time, the persistence of TCDD and herbicides in the environment, and the degree of likely penetration of herbicides into the ground. This paper is intended to help investigators understand better the fate and transport of herbicides and TCDD from spray missions, particularly in performing epidemiological studies. METHODS: This paper reviews the published scientific literature related to the environmental fate of Agent Orange and the contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and discusses how this affected the potential exposure to TCDD of ground troops in Vietnam. Specifically, the mechanisms of dissipation and degradation as they relate to environmental distribution and bioavailability are addressed. RESULTS: The evaluation of the spray systems used to disseminate herbicides in Vietnam showed that they were capable of highly precise applications both in terms of concentrations sprayed and area treated. Research on tropical forest canopies with leaf area indices (a measure of foliage density) from 2 to 5 indicated that the amount of herbicide and associated TCDD reaching the forest floor would have been between 1 and 6% of the total aerial spray. Studies of the properties of plant surface waxes of the cuticle layer suggested that Agent Orange, including the TCDD, would have dried (i.e., be absorbed into the wax layer of the plant cuticle) upon spraying within minutes and could not be physically dislodged. Studies of Agent Orange and the associated TCDD on both leaf and soil surface have demonstrated that photolysis by sunlight would have rapidly decreased the concentration of TCDD, and this process continued in shade. Studies of 'dislodgeable foliar residues' (DFR, the fraction of a substance that is available for cutaneous uptake from the plant leaves) showed that only 8% of the DFR was present 1 hr after application. This dropped to 1% of the total 24 hrs after application. Studies with human volunteers confirmed that after 2 hrs of saturated contact with bare skin, only 0.15-0.46% of 2,4,5-T, one of the phenoxy acetic acid compounds that was an active ingredient of Agent Orange, entered the body and was eliminated in the urine. CONCLUSIONS: The prospect of exposure to TCDD from Agent Orange in ground troops in Vietnam seems unlikely in light of the environmental dissipation of TCDD, little bioavailability, and the properties of the herbicides and circumstances of application that occurred. Photochemical degradation of TCDD and limited bioavailability of any residual TCDD present in soil or on vegetation suggest that dioxin concentrations in ground troops who served in Vietnam would have been small and indistinguishable from background levels even if they had been in recently treated areas. Laboratory and field data reported in the literature provide compelling evidence on the fate and dislodgeability of herbicide and TCDD in the environment. This evidence of the environmental fate and poor bioavailability of TCDD from Agent Orange is consistent with the observation of little or no exposure in the veterans who served in Vietnam. Appreciable accumulation of TCDD in veterans would have required repeated long-term direct skin contact of the type experienced by United States (US) Air Force RANCH HAND and US Army Chemical Corps personnel who handled or otherwise had direct contact with liquid herbicide, not from incidental exposure under field conditions where Agent Orange had been sprayed.  相似文献   

20.
For several decades, perfluorooctane sulfonate (PFOS) has widely been used as a fluorinated surfactant in aqueous film forming foams used as hydrocarbon fuel fire extinguishers. Due to concerns regarding its environmental persistence and toxicological effects, PFOS has recently been replaced by novel fluorinated surfactants such as Forafac®1157, developed by the DuPont company. The major component of Forafac®1157 is a 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and a link between the trade name and the exact chemical structure is presented here to the scientific community for the first time. In the present work, the structure of the 6:2 FTAB was elucidated by 1H, 13C and 19F nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Moreover, its major metabolites from blue mussel (Mytilus edulis) and turbot (Scophthalmus maximus) and its photolytic transformation products were identified. Contrary to what has earlier been observed for PFOS, the 6:2 FTAB was extensively metabolized by blue mussel and turbot exposed to Forafac®1157. The major metabolite was a deacetylated betaine species, from which mono- and di-demethylated metabolites also were formed. Another abundant metabolite was the 6:2 fluorotelomer sulfonamide. In another experiment, Forafac®1157 was subjected to UV-light induced photolysis. The experimental conditions aimed to simulate Arctic conditions and the deacetylated species was again the primary transformation product of 6:2 FTAB. A 6:2 fluorotelomer sulfonamide was also formed along with a non-identified transformation product. The environmental presence of most of the metabolites and transformation products was qualitatively demonstrated by analysis of soil samples taken in close proximity to an airport fire training facility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号