首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the effects of metal mobilizing plant-growth beneficial bacterium Phyllobacterium myrsinacearum RC6b on plant growth and Cd, Zn and Pb uptake by Sedum plumbizincicola under laboratory conditions. Among a collection of metal-resistant bacteria, P. myrsinacearum RC6b was specifically chosen as a most favorable metal mobilizer based on its capability of mobilizing high concentrations of Cd, Zn and Pb in soils. P. myrsinacearum RC6b exhibited a high degree of resistance to Cd (350 mg L−1), Zn (1000 mg L−1) and Pb (1200 mg L−1). Furthermore, P. myrsinacearum RC6b showed multiple plant growth beneficial features including the production of 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophore and solubilization of insoluble phosphate. Inoculation of P. myrsinacearum RC6b significantly increased S. plumbizincicola growth and organ metal concentrations except Pb, which concentration was lower in root and stem of inoculated plants. The results suggest that the metal mobilizing P. myrsinacearum RC6b could be used as an effective inoculant for the improvement of phytoremediation in multi-metal polluted soils.  相似文献   

2.
The present study was to isolate and identify a potent algicidal compound from extract of Salvia miltiorrhiza and study the potential inhibition mechanism on Microcystis aeruginosa. Column chromatography and bioassay-guided fractionation methods were carried out to yield neo-przewaquinone A, which was identified by spectral analysis. The EC50 of neo-przewaquinone A on M. aeruginosa were 4.68 mg L−1. In addition, neo-przewaquinone A showed relatively higher security on Chlorella pyrenoidosa and Scenedesmus obliquus, with the EC50 values of 14.78 and 10.37 mg L−1, respectively. For the potential inhibition mechanisms, neo-przewaquinone A caused M. aeruginosa cells morphologic damage or lysis, increased malondialdehyde content and decreased the soluble protein content, total antioxidant and superoxide dismutase activity, and significantly inhibited three photosynthesis-related genes (psaB, psbD, and rbcL). The results demonstrated the algicidal effect of neo-przewaquinone A on M. aeruginosa and provided the possible inhibition mechanisms.  相似文献   

3.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   

4.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   

5.
CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer-Emmett-Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L−1 soluble copper or by 1.0 mg L−1 CuO-NP that released only 0.16 mg L−1 soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L−1 CuO-NP, but not in the comparable 0.2 mg L−1 soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content.  相似文献   

6.
Short-term 48, 72 and 96-h aquatic toxicity tests were conducted to evaluate the acute toxicity of eight fluorinated acids to the cladoceran, Daphnia magna, the green alga, Pseudokirchneriella subcapitata, and the rainbow trout, Oncorhynchus mykiss or the fathead minnow, Pimephales promelas. The eight fluorinated acids studied were tridecafluorohexyl ethanoic acid (6:2 FTCA), heptadecafluorooctyl ethanoic acid (8:2 FTCA), 2H-dodecafluoro-2-octenoic acid (6:2 FTUCA), 2H-hexadecafluoro-2-decenoic acid (8:2 FTUCA), 2H,2H,3H,3H-undecafluoro octanoic acid (5:3 acid), 2H,2H,3H,3H-pentadecafluoro decanoic acid (7:3 acid), n-perfluoropentanoic acid (PFPeA) and n-perfluorodecanoic acid (PFDA). The results of the acute toxicity tests conducted during this study suggest that the polyfluorinated acids, 8:2 FTCA, 8:2 FTUCA, 6:2 FTCA, 6:2 FTUCA, 7:3 acid and 5:3 acid, and the perfluorinated acids PFPeA and PFDA, are generally of low to medium concern based on evaluation of their acute freshwater toxicity (EC/LC50s typically between 1 and >100 mg L−1) using the USEPA TSCA aquatic toxicity evaluation paradigm. For the polyfluorinated acids, aquatic toxicity generally decreased as the number of fluorinated carbons decreased and as the overall carbon chain length decreased from 12 to 8. Acute aquatic toxicity of the 5 and 10 carbon perfluorocarboxylic acids (EC/LC50s between 10.6 and >100 mg L−1) was greater or similar to that of the 6-9 carbon perfluorocarboxylic acids (EC/LC50s > 96.5 mg L−1). This study also provides the first report of the acute aquatic toxicity of the 5:3 acid (EC/LC50s of 22.5 to >103 mg L−1) which demonstrated less aquatic toxicity than the 7:3 acid (EC/LC50s of 0.4-32 mg L−1). The cladoceran, D. magna and the green alga, P. subcapitata had generally similar EC50 values for a given substance while fish were typically equally or less sensitive with the exception that PFPeA was most toxic to fish. Predicted no-effect concentrations (PNECs) were estimated using approaches consistent with REACH guidance and when compared with available environmental concentrations, these PNECs suggest that the fluorinated acids tested pose little risk for aquatic organisms.  相似文献   

7.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

8.
The halophytic shrub Halimione portulacoides is known to be capable of growth in soils containing extremely high concentrations of Zn. This study evaluated in detail the tolerance and accumulation potential of H. portulacoides under moderate and high external Zn levels. A greenhouse experiment was conducted in order to investigate the effects of a range of Zn concentrations (0-130 mmol L−1) on growth and photosynthetic performance by measuring relative growth rate, total leaf area, specific leaf area, gas exchange, chlorophyll fluorescence parameters and photosynthetic pigment concentrations. We also determined the total zinc, nitrogen, phosphorus, calcium, magnesium, sodium, potassium, iron and copper concentrations in the plant tissues. H. portulacoides demonstrated hypertolerance to Zn stress, since it survived with leaf concentrations of up to 2300 mg Zn kg−1 dry mass, when treated with 130 mmol Zn L−1. Zinc concentrations greater than 70 mmol L−1 in the nutrient solution negatively affected plant growth, in all probability due to the recorded decline in net photosynthesis rate. Our results indicate that the Zn-induced decline in the photosynthetic function of H. portulacoides may be attributed to the adverse effect of the high concentration of the metal on photosynthetic electron transport. Growth parameters were virtually unaffected by leaf tissue concentrations as high as 1500 mg Zn kg−1 dry mass, demonstrating the strong capability of H. portulacoides to protect itself against toxic Zn concentrations. The results of our study indicate that this salt-marsh shrub may represent a valuable tool in the restoration of Zn-polluted areas.  相似文献   

9.
Pharmaceuticals, including the lipid regulator gemfibrozil and the non-steroidal anti-inflammatory drug diclofenac have been identified in waste water treatment plant effluents and receiving waters throughout the western world. The acute and chronic toxicity of these compounds was assessed for three freshwater species (Daphnia magna,Pseudokirchneriella subcapitata, Lemna minor) using standardised toxicity tests with toxicity found in the non-environmentally relevant mid mg L−1 concentration range. For the acute endpoints (IC50 and EC50) gemfibrozil showed higher toxicity ranging from 29 to 59 mg L−1 (diclofenac 47-67 mg L−1), while diclofenac was more toxic for the chronic D. magna 21 d endpoints ranging from 10 to 56 mg L−1 (gemfibrozil 32-100 mg L−1). These results were compared with the expression of several biomarkers in the zebra mussel (Dreissena polymorpha) 24 and 96 h after exposure by injection to concentrations of 21 and 21,000 μg L−1 corresponding to nominal concentrations of 1 and 1000 μg L−1. Exposure to gemfibrozil and diclofenac at both concentrations significantly increased the level of lipid peroxidation, a biomarker of damage. At the elevated nominal concentration of 1000 μg L−1 the biomarkers of defence glutathione transferase and metallothionein were significantly elevated for gemfibrozil and diclofenac respectively, as was DNA damage after 96 h exposure to gemfibrozil. No evidence of endocrine disruption was observed using the alkali-labile phosphate technique. Results from this suite of biomarkers indicate these compounds can cause significant stress at environmentally relevant concentrations acting primarily through oxidation pathways with significant destabilization of the lysosomal membrane and that biomarker expression is a more sensitive endpoint than standardised toxicity tests.  相似文献   

10.
Ong PT  Yong JC  Chin KY  Hii YS 《Chemosphere》2011,84(5):578-584
Understanding on the bioaccumulation and depuration of PAHs (polycyclic aromatic hydrocarbons) in Penaeus monodon is important in seafood safety because it is one of the most popular seafood consumed worldwide. In this study, we used anthracene as the precursor compound for PAHs accumulation and depuration in the shrimp. Commercial feed pellets spiked with anthracene were fed to P. monodon. At 20 mg kg−1 anthracene, P. monodon accumulated 0.1% of the anthracene from the feed. P. monodon deputed the PAH two times faster than its accumulation. The shrimp reduced its feed consumption when anthracene content in the feed exceeded 20 mg kg−1. At 100 mg kg−1 anthracene, P. monodon started to have necrosis tissues on the posterior end of their thorax. The bioaccumulation factor (BAF), uptake rate constant (k1) and depuration rate constant (k2) of anthracene in P. monodon were 1.15 × 10−3, 6.80 × 10−4 d−1 and 6.28 × 10−1 d−1, respectively. The depuration rate constant is about thousand times higher than the uptake rate constant and this indicated that this crustacean is efficient in depurating hydrocarbons from their tissue.  相似文献   

11.
Jin X  Zha J  Xu Y  Giesy JP  Richardson KL  Wang Z 《Chemosphere》2012,86(1):17-23
2,4,6-Trichlorophenol (2,4,6-TCP) is a common chemical intermediate and a by-product of water chlorination and combustion processes, and is a priority pollutant of the aquatic environment in many countries. Although information on the toxicity of 2,4,6-TCP is available, there is a lack of information on the predicted no-effect concentration (PNEC) of 2,4,6-TCP, mainly due to the shortage of chronic and site-specific toxicity data. In the present study, acute and sub-chronic toxicity of 2,4,6-TCP on six different resident Chinese aquatic species were determined. PNEC values were calculated and compared by use of two approaches: assessment factor (AF) and species sensitivity distribution (SSD). Values for acute toxicity ranged from 1.1 mg L−1 (Plagiognathops microlepis) to 42 mg L−1 (Corbicula fluminea) and the sub-chronic no observed effect concentrations (NOECs) ranged from 0.05 mg L−1 (Mylopharyngodon piceus) to 2.0 mg L−1 (C. fluminea). PNECs obtained by the assessment factor approach with acute (AF = 1000, 0.001 mg L−1) or chronic (AF = 10, 0.005 mg L−1) toxicity data were one order of magnitude less than those from SSD methods (0.057 mg L−1). PNEC values calculated using SSD methods with a 50% certainty for 2,4,6-TCP was less than those obtained by use of the USEPA recommend final chronic value (FCV) method (0.097 mg L−1) and the one obtained by use of the USEPA recommend acute-to-chronic (ACR) methods (0.073 mg L−1). PNECs derived using AF methods were more protective and conservative than that derived using SSD methods.  相似文献   

12.
Fluoride (F) contamination is a global environmental problem, as there is no cure of fluorosis available yet. Prosopis juliflora is a leguminous perennial, phreatophyte tree, widely distributed in arid and semi-arid regions of world. It extensively grows in F endemic areas of Rajasthan (India) and has been known as a “green” solution to decontaminate cadmium, chromium and copper contaminated soils. This study aims to check the tolerance potential of P. juliflora to accumulate fluoride. For this work, P. juliflora seedlings were grown for 75 d on soilrite under five different concentrations of F viz., control, 25, 50, 75 and 100 mg NaF kg−1. Organ-wise accumulation of F, bioaccumulation factor (BF), translocation factor (TF), growth ratio (GR) and F tolerance index (TI) were examined. Plant accumulated high amounts of F in roots. The organ-wise distribution showed an accumulation 4.41 mg kg−1dw, 12.97 mg kg−1dw and 16.75 mg kg−1dw F, in stem, leaves and roots respectively. The results indicated significant translocation of F from root into aerial parts. The bioaccumulation and translocation factor values (>1.0) showed high accumulation efficiency and tolerance of P. juliflora to F. It is concluded that P. juliflora is a suitable candidate for phytoremediation purpose and can be explored further for the decontamination of F polluted soils.  相似文献   

13.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   

14.
The aim of the present study is the comparative examination of accumulation and detoxification of Cu and Hg in digestive gland and gills of mussels Mytilus galloprovincialis, using atomic absorption spectrophotometry and autometallography. Mussels were exposed to 0.08 mg L−1 Cu, 0.08 mg L−1 Hg, as well as to a mixture of 0.08 mg L−1 Hg and 0.08 mg L−1 Cu for 11 d. After the experimental exposure, animals were kept under laboratory conditions for a detoxification period of 7 d. An antagonistic effect of Cu against to Hg accumulation was noted in the digestive gland of mussels after the experimental exposure, as well as after the detoxification period, supporting the protective role of Cu against to Hg toxicity in this tissue. Digestive gland was suggested as a main organ for Hg accumulation and gills as a target position for Cu accumulation. Additionally, lower time was evaluated for Hg detoxification in the digestive gland and gills of mussels, in relation to those addressed for Cu detoxification in the same tissues. The evaluation of black silver deposits (BSD) extent performed in digestive gland and gills was suggested as a less sensitive approach, in relation to atomic absorption spectrophotometry (AAS), to indentify the concentration of heavy metals in tissues of mussels. The toxic effects of Hg, Cu and a mixture of them on lysosomal system of the digestive cells are also discussed.  相似文献   

15.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

16.
Yan S  Zhou Q 《Chemosphere》2011,85(6):1088-1094
Little information is available about the toxicity of toluene, ethylbenzene and xylene acting on macrophytes, and their toxicity data are rarely used in regulation and criteria decisions. The results extended the knowledge on toxic effects of toluene, ethylbenzene and xylene on aquatic plants. The responses of Hydrilla verticillata to these pollutants were investigated. Chlorophyll levels, lipid peroxidation, and antioxidant enzymes (superoxide dismutase and guaiacol peroxidase) showed diverse responses at different concentrations of toluene, ethylbenzene and xylene. The linear regression analyses were performed respectively, suggesting the concentrations of toluene, ethylbenzene and xylene expected to protect aquatic macrophytes were 7.30 mg L−1, 1.15 mg L−1 and 2.36 mg L−1, respectively. This study emphasized that aquatic plants are also sensitive to organic pollutants as fishes and zooplanktons, indicating that macrophytes could be helpful in predicting the toxicity of these pollutants and should be considered in regulation and criteria decisions for aquatic environment protection.  相似文献   

17.
We used Caenorhabditis elegans to investigate whether acute exposure to TiO2-NPs at the concentration of 20 μg L−1 reflecting predicted environmental relevant concentration and 25 mg L−1 reflecting concentration in food can cause toxicity on nematodes with mutations of susceptible genes. Among examined mutants associated with oxidative stress and stress response, we found that genes of sod-2, sod-3, mtl-2, and hsp-16.48 might be susceptible for TiO2-NPs toxicity. Mutations of these genes altered functions of both possible primary and secondary targeted organs in nematodes exposed to 25 mg L−1 of TiO2-NPs for 24-h. Mutations of these genes caused similar expression patterns of genes required for oxidative stress in TiO2-NPs exposed mutant nematodes, implying their similar mechanisms to form the susceptible property. Nevertheless, acute exposure to 20 μg L−1 of TiO2-NPs for 24-h and 25 mg L−1 of TiO2-NPs for 0.48-h or 5.71-h did not influence functions of both possible primary and secondary targeted organs in sod-2, sod-3, mtl-2, and hsp-16.48 mutants. Therefore, our results suggest the relatively safe property of acute exposure to TiO2-NPs with certain durations at predicted environmental relevant concentrations or concentrations comparable to those in food in nematodes with mutations of some susceptible genes.  相似文献   

18.
We conducted acute toxicity tests and sediment toxicity tests for copper pyrithione (CuPT) and a metal pyrithione degradation product, 2,2′-dipyridyldisulfide [(PS)2], using a marine polychaete Perinereis nuntia. The acute toxicity tests yielded 14-d LC50 concentrations for CuPT and (PS)2 of 0.06 mg L−1 and 7.9 mg L−1, respectively. Sediment toxicity tests resulted in 14-d LC50 concentrations for CuPT and (PS)2 of 1.1 mg kg−1 dry wt. and 14 mg kg−1 dry wt., respectively. In addition to mortality, sediment avoidance behavior and decreases in animal growth rate were observed; growth rate was the most susceptible endpoint in the sediment toxicity tests of both toxicants. Thus, we propose lowest observed effect concentrations of 0.3 mg kg−1 dry wt. and 0.2 mg kg−1 dry wt. for CuPT and (PS)2, respectively, and no observed effect concentrations of 0.1 mg kg−1 dry wt. for both CuPT and (PS)2. The difference in the toxicity values between CuPT and (PS)2 observed in the acute toxicity test was greater than the difference in these values in the sediment toxicity test, and we attribute this to (PS)2 being more hydrophilic than CuPT. In addition to the toxicity tests, we analyzed conjugation activity of several polychaete enzymes to the toxicants and marked activity of palmitoyl coenzyme-A:biocides acyltransferase and UDP-glucuronosyl transferase was observed.  相似文献   

19.
Huang L  Lu D  Diao J  Zhou Z 《Chemosphere》2012,87(1):7-11
Enantioselectivity in ecotoxicity and biodegradation of chiral pesticide benalaxyl to freshwater algae Scenedesmus obliquus was studied. The 96 h-EC50 values of rac-, R-(−)-, S-(+)-benalaxyl were 2.893, 3.867, and 8.441 mg L−1, respectively. Therefore, the acute toxicities of benalaxyl enantiomers were enantioselective. In addition, the pigments chlorophyll a and chlorophyll b, antioxidant enzyme activities catalase (CAT) and superoxide dismutase (SOD) as well as lipid peroxide malondialdehyde (MDA) were determined to evaluate the different toxic effects. Chlorophyll a was induced by S-(+)-benalaxyl but inhibited by R-(−)-benalaxyl at 1 mg L−1. Chlorophyll b were both induced at 1 mg L−1, but S-(+)-form was fourfold higher than R-(−)-form. S-(+)-benalaxyl inhibited more CAT activities at 3 mg L−1 and 5 mg L−1, induced less SOD activity and MDA content at 5 mg L−1 than R-(−)-benalaxyl. Based on these data, enantioselectivity occurred in anti-oxidative stress when S. obliquus response to benalaxyl. In the biodegradation experiment, the half-lives of S-(+)-benalaxyl and R-(−)-benalaxyl were 4.07 d and 5.04 d, respectively, resulting in relative enrichment of the R-(−)-form. These results showed that toxic effects and biodegradation of benalaxyl in S. obliquus were enantioselective, and such enantiomeric differences must be taken into consideration in pesticide risk.  相似文献   

20.
The effects of increasing Cu, Ni and Cr concentrations (0.5, 5, 10, 20 and 40 mg L−1) on microtubule organization and the viability of leaf cells of the seagrass Cymodocea nodosa for 13 consecutive days were investigated under laboratory conditions. Increased oblique microtubule orientation, microtubule depolymerization at the 5–40 mg L−1 Ni treatments after 3 d of exposure, and a complete microtubule depolymerization at all Ni treatments after 5 d were observed. Cu depolymerised microtubules after three to 7 d of exposure, while Cr caused an extensive microtubule bundling after 9 or 11 d of exposure, depending on metal dosage. Fluorescence intensity measurements further consolidated the above phenomena. Cell death, occurring at later time than microtubule disturbance, was also observed at all Cu and Ni treatments and at the 10–40 mg L−1 Cr treatments and adding to the above quantification of the number of dead cells clearly showed that only a portion of the cell population studied died. The data presented, being the first assessment of microtubule disturbance in seagrasses, indicate that microtubules in seagrass leaf cells could be used as a valuable and early marker of metal-induced stress in biomonitoring programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号