首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Ma W  Ma L  Li J  Wang F  Sisák I  Zhang F 《Chemosphere》2011,84(6):814-821
Increasing fertilizer phosphorus (P) application in agriculture has greatly contributed to the increase of crop yields during the last decades in China but it has also increased P flows in food production and consumption. The relationship between P use efficiency and P flow is not well quantified at national level. In present paper we report on P flows and P use efficiencies in rice, wheat, and maize production in China using the NUFER model. Conservation strategies for P utilization and the impact of these strategies on P use efficiency have been evaluated. Total amounts of P input to wheat, rice, and maize fields were 1095, 1240, and 1128 Gg, respectively, in China, approximately 80% of which was in chemical fertilizers. The accumulation of P annually in the fields of wheat, rice, and maize was 29.4, 13.6, and 21.3 kg ha−1, respectively. Phosphorus recovered in the food products of wheat, rice, and maize accounted for only 12.5%, 13.5%, and 3.8% of the total P input, or 3.2%, 2.6%, and 0.9% of the applied fertilizer P, respectively. The present study shows that optimizing phosphorus flows and decreasing phosphorus losses in crop production and utilization through improved nutrient management must be considered as an important issue in the development of agriculture in China.  相似文献   

2.
Phosphorus flows in Swedish agriculture and food chain were studied by material flow analysis. The system studied included agriculture, food consumption, related waste and wastewater from private households and municipal wastewater treatment plants. Swedish farmland had net annual phosphorus inputs of ~12 600 metric tons (4.1 kg P ha−1) in 2008–2010. The total import of phosphorus in food and feed to Sweden exceed imports of phosphorus in fertilizers. Despite strict animal density regulations relating to manure phosphorus content, phosphorus is accumulating on Swedish animal farms. The total quantity of manure produced greatly exceeds imported mineral phosphorus fertilizer and almost equals total phosphorus inputs to Swedish farmland.  相似文献   

3.
Qiao M  Zheng YM  Zhu YG 《Chemosphere》2011,84(6):773-778
The key stocks and flows of phosphorus (P) through food consumption in Beijing and Tianjin, two megacities in northern China, were explored using a material flow analysis (MFA) approach to construct a static model of P metabolism. A total of 4498 t P has accumulated with 72% of P flow imported through food consumption eventually remaining in Beijing in 2008. Around 64% of the total inflow of P (2670 t) remained in Tianjin in 2008. P in the uncollected sewage from both urban and rural residents and the effluents from sewage treatment plants has significant negative effects on water quality. An average of 55% the P flow remained in the sewage sludge through urban food consumption. The key problems in P metabolism and management in megacities are identified based on the quantitative analysis of P cycling through food consumption. Relevant solutions for improving P recycling efficiency are also discussed. It is important to link P flows with environmental regulations and to establish a strong coordination between urban and rural areas for nutrient recycling to attain sustainable development of megacities.  相似文献   

4.
This paper reports a desk study to quantify the total-nitrogen (N) and ammoniacal-N contents of livestock excreta, and to compare them with estimates of N losses to the environment from that excreta. Inventories of ammonia (NH3), nitrous oxide (N2O), dinitrogen (N2), and nitric oxide emissions (NO), together with estimates of nitrate (NO3-) leaching and crop N uptake were collated. A balance sheet was constructed to determine whether our estimates of N in livestock excreta were consistent with current estimates of N losses and crop N uptake from that N, or whether emissions of N compounds from livestock excreta may have been underestimated. Total N excretion by livestock in England and Wales (E&W) was estimated as 767-816 x 10(3) t of which 487-518 x 10(3) t was estimated to be total ammoniacal-N (TAN). Estimates of NH3 and N2O losses during housing and storage were derived from the difference between the total amount of TAN in excreta deposited in and around buildings, and the total amount of TAN in manure (i.e. the excreta deposited in and around buildings after collection and storage) prior to spreading and were ca. 64-88 x 10(3) t. The NH3-N emission from livestock buildings and manure storage in E&W quoted in the UK Emission Inventory (Pain et al., 1999. Inventory of Ammonia Emission from UK Agriculture, 1977. Report of MAFF contract WAO630, IGER, North Wyke) is ca. 80 x 10(3) t. Losses from NO3- leaching in the season after manure application and grazing were estimated as 73 and 32 x 10(3) t, respectively. Other gaseous losses of N were estimated as ca. 54 x 10(3) t. Crop uptake of manure N was estimated to be between 7 and 24 x 10(3) t. For manures, estimated N losses, immobilization and crop uptake total 326 x 10(3) t compared with estimates of 293-319 x 10(3) t TAN in excreta. Total N losses and crop uptake from TAN deposited at grazing were estimated to be 179-199 x 10(3) t compared with ca. 224 x 10(3) t TAN excreted. Thus all the TAN in manures appears to be accounted for, but ca. 25-45 x 10(3) t of TAN in urine deposited at grazing were not, and could be an underestimated source of gaseous emission or nitrate leaching.  相似文献   

5.
Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus recovery). However the emerging global challenge of phosphorus scarcity with serious implications for future food security, means phosphorus will also need to be recovered for productive reuse as a fertilizer in food production to replace increasingly scarce and more expensive phosphate rock. Through an integrated and systems framework, this paper examines the full spectrum of sustainable phosphorus recovery and reuse options (from small-scale low-cost to large-scale high-tech), facilitates integrated decision-making and identifies future opportunities and challenges for achieving global phosphorus security. Case studies are provided rather than focusing on a specific technology or process. There is no single solution to achieving a phosphorus-secure future: in addition to increasing phosphorus use efficiency, phosphorus will need to be recovered and reused from all current waste streams throughout the food production and consumption system (from human and animal excreta to food and crop wastes). There is a need for new sustainable policies, partnerships and strategic frameworks to develop renewable phosphorus fertilizer systems for farmers. Further research is also required to determine the most sustainable means in a given context for recovering phosphorus from waste streams and converting the final products into effective fertilizers, accounting for life cycle costs, resource and energy consumption, availability, farmer accessibility and pollution.  相似文献   

6.

Purpose

When fossil fuels on the Earth are used up, which kind of green energy can be used to replace them? Do every bioenergy generation or crop food chain results in environmental pollution? These questions are major concerns in a world facing restricted supplies of energy and food as well as environmental pollutions. To alleviate these issues, option biogases are explored in this paper.

Materials and methods

Two types of biogas generators were used for modifying the traditional crop food chain [viz. from atmospheric CO2 photosynthesis to crops, crop stem/husk biowastes (burnt in cropland or as home fuels), to livestock droppings (dumping away), pork and people foods, then to CO2], via turning the biowaste pollutants into green bioenergies. By analyzing the traditional food chain via observation method, the drawbacks of by-product biowastes were revealed. Also, the whole cycle chain was further analyzed to assess its ??greenness,?? using experimental data and other information, such as the material balance (e.g., the absorbed CO2, investment versus generated food, energy, and wastes).

Results and discussion

The data show that by using the two types of biogas generators, clean renewable bioenergy, crop food, and livestock meat could be continuously produced without creating any waste to the world. The modification chain largely reduced CO2 greenhouse gas and had a low-cost investment. The raw materials for the gas generators were only the wastes of crop stems and livestock droppings. Thus, the recommended CO2 bioenergy cycle chain via the modification also greatly solved the environmental biowaste pollutions in the world.

Conclusions

The described two type biogases effectively addressed the issues on energy, food, and environmental pollution. The green renewable bioenergy from the food cycle chain may be one of suitable alternatives to fossil and tree fuels for agricultural countries.  相似文献   

7.
Mineral phosphorus (P) fertilizers processed from fossil reserves have enhanced food production over the past 50 years and, hence, the welfare of billions of people. Fertilizer P has, however, not only been used to lift the fertility level of formerly poor soils, but also allowed people to neglect the reuse of P that humans ingest in the form of food and excrete again as faeces and urine and also in other organic wastes. Consequently, P mainly moves in a linear direction from mines to distant locations for crop production, processing and consumption, where a large fraction eventually may become either agronomically inactive due to over-application, unsuitable for recycling due to fixation, contamination or dilution, and harmful as a polluting agent of surface water. This type of P use is not sustainable because fossil phosphate rock reserves are finite. Once the high quality phosphate rock reserves become depleted, too little P will be available for the soils of food-producing regions that still require P supplements to facilitate efficient utilization of resources other than P, including other nutrients. The paper shows that the amounts of P applied in agriculture could be considerably smaller by optimizing land use, improvement of fertilizer recommendations and application techniques, modified livestock diets, and adjustment of livestock densities to available land. Such a concerted set of measures is expected to reduce the use of P in agriculture whilst maintaining crop yields and minimizing the environmental impact of P losses. The paper also argues that compensation of the P exported from farms should eventually be fully based on P recovered from ‘wastes’, the recycling of which should be stimulated by policy measures.  相似文献   

8.
As a component of a multi-level study of the anthropogenic lead cycle for year 2000 (52 countries, 8 regions, and the planet), we have estimated the lead flows in seven emission streams: tailings, slag, fabrication and manufacturing, dissipation from use, hibernation, landfilling, and dispersion following product discard. For every 1 kg of lead put into end use, 0.5 kg is lost to the environment, largely due to landfilling and dissipation from use. From the standpoint of the receiving media, 1/3 of the losses are to uncontained solids on land and 48% of the losses are to containment facilities on land. On a country basis, the largest losses occur in the United States and China, which between them are responsible for about 32% of total global lead losses. On a per capita basis, the highest lead losses occurred in the United Kingdom, Belgium-Luxembourg, and Ireland.  相似文献   

9.
Sonesson U  Anteson F  Davis J  Sjödén PO 《Ambio》2005,34(4-5):371-375
In environmental systems analysis of food production systems, the consumer phase (home transport, cooking, storing, and wastage) is an important contributor to the total life-cycle environmental impact. However, households are the least investigated part of the food chain. Information gathering about households involves difficulties; the number of households is large, and food-related activities are embedded in other household activities. In cooperation between researchers from environmental systems analysis and consumer research, Swedish households were surveyed by questionnaire, diary, and interviews. Data on home transport of food and wastage were collected. The average weekly driving distance was 28 to 63 km per household, depending on how trips made in conjunction with other errands are allocated. The wastage of prepared food ranged between 0 and 34% for different food categories, and wastage from storing between 0 and 164% (more food was discarded, e.g. by cleaning out a cupboard, than consumed). In both cases dairy products scored highest.  相似文献   

10.
Eero Asmala  Laura Saikku 《Ambio》2010,39(2):126-135
Ongoing eutrophication is changing the Baltic Sea ecosystem. Aquaculture causes relatively small-scale nutrient emissions, but local environmental impact may be considerable. We used substance flow analysis (SFA) to identify and quantify the most significant flows and stocks of nitrogen (N) and phosphorus (P) related to rainbow trout aquaculture in Finland. In 2004–2007, the input of nutrients to the system in the form of fish feed was 829 t N year−1 and 115 t P year−1. Around one-fifth of these nutrients ended up as food for human consumption. Of the primary input, 70% ended up in the Baltic Sea, directly from aquaculture and indirectly through waste management. The nutrient cycle could be closed partially by using local fish instead of imported fish in rainbow trout feed, thus reducing the net load of N and P to a fraction.  相似文献   

11.
Standardized household waste was mixed with different litter amendments, straw, leaves, hardwood shavings, softwood shavings, paper, and sphagnum peat, resulting in six compost mixtures. In addition non-amended household waste was composted. Composting was done in small rotatable bins and compost samples were taken on a regular basis until day 590. Extraction and analysis of wet compost samples showed no evidence for the presence of chloroorganic compounds. Drying and re-wetting of compost samples, however, revealed that chloromethoxybenzaldehyde (CMBA) was formed in all composts at concentrations varying between 5.6 and 73.4 microg kg(-1) dry matter. CMBA was not present in the original materials. During composting, there was a clear positive relation between formation of CMBA and microbial activity, as indicated by C losses and temperature. Formation took place during the most intensive phase of composting when C losses were highest. Under anaerobic conditions, however, which prevailed initially in the non-amended compost, no CMBA was formed. Calculation of total amounts of CMBA in composts revealed that there was a small decrease during storage in the hardwood, peat, and softwood composts. However, all composts contained CMBA after 590 days. The mean concentration was 33.4 microg kg(-1) dry matter (s.d. = 21.9). Possible biocidal effects of composts when used in cultivation may be explainable by the presence of natural toxic compounds formed during composting.  相似文献   

12.
An analysis of the environmental effects and resource consumption by four systems for management of wastewater and organic household waste in a new city area have been performed, as follows: (1) conventional system complemented with advanced sludge treatment for phosphorus recovery, (2) blackwater system with urine diversion and food waste disposers, (3) blackwater system with food waste disposers and reverse osmosis, and (4) local wastewater treatment plant with nutrient recovery by using reverse osmosis. Substance-flow analysis and energy/exergy calculations were performed by using the software tool URWARE/ORWARE. Emissions were calculated and classified based on the impact categories global warming potential, acidification, and eutrophication, according to ISO 14042 (2000). The analysis also included nutrient recovery (i.e., the potential to use nutrients as a fertilizer). Depending on which aspects are prioritized, different systems can be considered to be the most advantageous.  相似文献   

13.
The status of fish populations in 3821 lakes in Norway, Sweden and Finland was assessed in 1995-1997. The survey lakes were chosen by stratified random sampling from all (126 482) Fennoscandian lakes > or = 0.04 km2. The water chemistry of the lakes was analyzed and information on fish status was obtained by a postal inquiry. Fish population losses were most frequent in the most highly acidified region of southern Norway and least common in eastern Fennoscandia. According to the inquiry results, the number of lost stocks of brown trout (Salmo trutta), roach (Rutilus rutilus), Arctic char (Salvelinus alpinus) and perch (Perca fluviatilis) was estimated to exceed 10000. The number of stocks of these species potentially affected by the low alkalinity of lake water was estimated to exceed 11000. About 3300 lakes showed high total phosphorus (> 25 microg L(-1)) and cyprinid dominance in eastern Fennoscandia, notably southwestern Finland. This survey did not reveal any extinction of fish species due to eutrophication. One-third of the lakes had been artificially stocked with at least one new species, most often brown trout, whitefish (Coregonus lavaretus s.l.), Arctic char, rainbow trout (Oncorhynchus mykiss), pike-perch (Stizostedion lucioperca), grayling (Thymallus thymallus), pike (Esox lucius), bream (Abramis brama), tench (Tinca tinca) and European minnow (Phoxinus phoxinus). The number of artificially manipulated stocks of these species in Fennoscandian lakes was estimated to exceed 52000. Hence, the number of fish species occurring in Nordic lakes has recently been changed more by stockings than by losses of fish species through environmental changes such as acidification.  相似文献   

14.
Cui Z  Chen X  Zhang F 《Ambio》2010,39(5-6):376-384
During the first 35 years of the Green Revolution, Chinese grain production doubled, greatly reducing food shortage, but at a high environmental cost. In 2005, China alone accounted for around 38% of the global N fertilizer consumption, but the average on-farm N recovery efficiency for the intensive wheat-maize system was only 16-18%. Current on-farm N use efficiency (NUE) is much lower than in research trials or on-farm in other parts of the world, which is attributed to the overuse of chemical N fertilizer, ignorance of the contribution of N from the environment and the soil, poor synchrony between crop N demand and N supply, failure to bring crop yield potential into full play, and an inability to effectively inhibit N losses. Based on such analyses, some measures to drastically improve NUE in China are suggested, such as managing various N sources to limit the total applied N, spatially and temporally matching rhizospheric N supply with N demand in high-yielding crops, reducing N losses, and simultaneously achieving high-yield and high NUE. Maximizing crop yields using a minimum of N inputs requires an integrated, interdisciplinary cooperation and major scientific and practical breakthroughs involving plant nutrition, soil science, agronomy, and breeding.  相似文献   

15.
Ground-level ozone in China: distribution and effects on crop yields   总被引:10,自引:0,他引:10  
Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China.  相似文献   

16.
Naylor RL  Bonine KM  Ewel KC  Waguk E 《Ambio》2002,31(4):340-350
Kosrae, Federated States of Micronesia, is a prototype of an island economy prone to economic crowding. Average family size is large, the habitable land area is small, economic activity is limited, and household dependence on natural resources for fuel and food is high. We analyze how economic crowding--and its mitigation through trade and migration policies--affects mangrove resource use. A comparison of household survey data from 1996 and 2000 indicates that despite decreases in US aid and public-sector jobs, average household consumption of mangrove resources has not increased. Migration and remittances have allowed the purchase of imported fuel and building materials substituting for mangrove wood. Despite changing preferences and shifts toward import consumption, population growth and further declines in US financial support will likely cause aggregate demand for mangrove and upland wood to rise. Moreover, continued emigration may accelerate the export of mangrove crabs to off-island Kosraeans.  相似文献   

17.
Baker LA 《Chemosphere》2011,84(6):779-784
Achieving better understanding phosphorus (P) flows through urban ecosystems is needed to conserve P, as non-renewable phosphate rock deposits become depleted and the global human population increases. A baseline mass flow analysis (MFA) for P developed for the Twin Cities Watershed (TCW, which includes most of the Minneapolis-St. Paul metropolitan region) showed that most P input was stored in the system (65%) or leaked from it (31%); only 4% was deliberately exported as useful products. In a realistic, comprehensive conservation scenario P input was reduced by 15%; deliberate export of P in the form of sewage sludge, food waste, and landscape waste was 68% of P input. In this scenario, increased deliberate export was accomplished by decreasing leakage (to 9% of input) and storage (to 23% of input). If used as agricultural fertilizer, the deliberately exported P in the conservation scenario would support about half of the food production required by the TCW.  相似文献   

18.

Background, aim, and scope  

Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality ‘impairment’ not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA.  相似文献   

19.
Dumas M  Frossard E  Scholz RW 《Chemosphere》2011,84(6):798-805
Harvests of crops, their trade and consumption, soil erosion, fertilization and recycling of organic waste generate fluxes of phosphorus in and out of the soil that continuously change the worldwide spatial distribution of total phosphorus in arable soils. Furthermore, due to variability in the properties of the virgin soils and the different histories of agricultural practices, on a planetary scale, the distribution of total soil phosphorus is very heterogeneous. There are two key relationships that determine how this distribution and its change over time affect crop yields. One is the relationship between total soil phosphorus and bioavailable soil phosphorus and the second is the relationship between bioavailable soil phosphorus and yields. Both of these depend on environmental variables such as soil properties and climate. We propose a model in which these relationships are described probabilistically and integrated with the dynamic feedbacks of P cycling in the human ecosystem. The model we propose is a first step towards evaluating the large-scale effects of different nutrient management scenarios. One application of particular interest is to evaluate the vulnerability of different regions to an increased scarcity in P mineral fertilizers. Another is to evaluate different regions’ deficiency in total soil phosphorus compared with the level at which they could sustain their maximum potential yield without external mineral inputs of phosphorus but solely by recycling organic matter to close the nutrient cycle.  相似文献   

20.
Although epidemiological studies have found a significant amount of toxins in surface water, a complex link between animals’ access to wastewater and associated animal and human welfare losses needs to be explored. The scarcity of safe water has put stress on the utilization of wastewater for crops and livestock production. The access of animals to wastewater is related to the emergence of dangerous animal’s diseases, hampering productivity, increasing economic losses, and risking human health along the food chain. This review explores use of wastewater for agriculture, epidemiological evidence of microbial contamination in wastewater, and animal and human welfare disruption due to the use of wastewater for crop and livestock production. More specifically, the review delves into animals exposure to wastewater for bathing, drinking, or grazing on a pasture irrigated with contaminated water and related animal and human welfare losses. We included some scientific articles and reviews published from 1970 to 2017 to support our rational discussions. The selected articles dealt exclusively with animals direct access to wastewater via bathing and indirect access via grazing on pasture irrigated with contaminated wastewater and their implication for animal and human welfare losses. The study also identified that some policy options such as wastewater treatments, constructing wastewater stabilization ponds, controlling animal access to wastewater, and dissemination of necessary information to ultimate consumers related to the source of agricultural produce and wastewater use in animal and crop production are required to protect the human and animal health and welfare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号