首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang B  Shu WS  Ye ZH  Lan CY  Wong MH 《Chemosphere》2003,52(9):1593-1600
The lead (Pb)/zinc (Zn) tailings contained high concentrations of heavy metals (total Pb, Zn, Cu and Cd concentrations 4164, 4377, 35 and 32 mg kg(-1), respectively), and low contents of major nutrient elements (N, P, and K) and organic matter. A field trial was conducted to compare growth performance, metal accumulation of Vetiver (Vetiveria zizanioides) and two legume species (Sesbania rostrata and Sesbania sesban) grown on the tailings amended with domestic refuse and/or fertilizer. It was revealed that domestic refuse alone and the combination of domestic refuse and artificial fertilizer significantly improved the survival rates and growth of V. zizanioides and two Sesbania species, especially the combination. However, artificial fertilizer alone did not improve both the survival rate and growth performance of the plants grown on tailings. Roots of these species accumulated similar levels of heavy metals, but the shoots of two Sesbania species accumulated higher (3-4 folds) concentrations of Pb, Zn, Cu and Cd than shoots of V. zizanioides. Most of the heavy metals in V. zizanioides were accumulated in roots, and the translocation of metals from roots to shoots was restricted. Intercropping of V. zizanioides and S. rostrata did not show any beneficial effect on individual plant species, in terms of height, biomass, survival rate, and metal accumulation, possibly due to the rather short experimental period of 5 months.  相似文献   

2.
The enhancement of photodegradation efficiency using Pt-TiO2 catalyst   总被引:19,自引:0,他引:19  
Li FB  Li XZ 《Chemosphere》2002,47(10):1103-1111
The residues from the extraction of lead/zinc (Pb/Zn) ores of most Pb/Zn mines are permanently stored in tailings ponds, which require revegetation to reduce their environmental impact. This can only be done if the main constraints on plant establishment are evaluated. This can readily be done by field and greenhouse studies.

To test this, the properties of different tailings from Lechang Pb/Zn mine located at the north of Guangdong Province in southern China have been studied. Physical and chemical properties including concentrations of metals (Pb, Zn, Cd and Cu) in the tailings and soils collected from different sites have been measured. The results showed that tailings contain low nitrogen (0.016–0.075%), low-organic matter (0.58–1.78%), high salt (3.55–13.85 dS/m), and high total and diethylene–tetramine–pentaacetic acid (DTPA)-extractable metal concentrations (total: 1019–1642 μg g−1 Pb, 3078–6773 μg g−1 Zn, 8–23 μg g−1 Cd, and 85–192 μg g−1 Cu; DTPA-extractable: 59–178 μg g−1 Pb, 21–200 μg g−1 Zn, 0.30–1.5 μg g−1 Cd, and 4.3–12 μg g−1 Cu). Aqueous extracts of tailings/soils (10%, 20% and 30%, w/v) from different sites were prepared for testing their effects on seed germination and root elongation of a vegetable crop Brassica chinensis and a grass species Cynodon dactylon. It was found that root elongation provided a better evaluation of toxicity than seed germination. The ranking of toxicity using root elongation was: high-sulfur tailings>tailingdam>sparsely vegetated tailings>densely vegetated tailings>mountain soil for both plants. This order was consistent with DTPA-extractable Pb contents in the tailings and soils. B. chinensis seedlings were then grown in the mixtures of different proportions of tailings and farm soil for 4 weeks, and the results (dry weights of seedlings) were in line with the root elongation test. All these demonstrated that heavy metal toxicity, especially available Pb, low content of nutrient, and poor physical structure were major constraints on plant establishment and colonization on the Pb/Zn mine tailings.  相似文献   


3.
Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50–49.80 mg/kg), Cu (159.50–1187.00 mg/kg), Ni (3.50–8.70 mg/kg), Pb (1707.00–4243.00 mg/kg), and Zn (909.00–7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region.  相似文献   

4.
Leung HM  Ye ZH  Wong MH 《Chemosphere》2007,66(5):905-915
A field survey of metal concentrations and arbuscular mycorrhizal (AM) components of plants growing on five mining sites was conducted in Chenzhou City, Hunan Province, Southern China and a control site in Hong Kong. Significant differences were observed in the average concentrations of total heavy metals (Pb, Zn, Cu, Cd) and one metalloid (As) in contaminated soils compared with the control site. Gramineae and Compositae were the dominant plant families growing on mine tailings, with Chrysanthemum moritolium (common chrysanthemum), Cynodon dactylon (Bermuda grass), Miscanthus florodulus (Sword grass) and Pteris vittata (Ladder brake fern) commonly found at all sites. AM fungal colonization was detected in most of the plants. Comparing the four common plant species, three components of mycorrhizal colonization (arbuscules, vesicles and coiled hyphae) were found in the roots of C. dactylon and P. vittata growing at Do Shun Long (DSL) mine site. Concentrations of As in fronds were 24-fold higher than in roots of P. vittata with the highest mycorrhizal colonization rate (73%) among all sampling sites. Extensive mycorrhizal colonization (85%) was also recorded in the roots of C. dactylon with As accumulation 57 times higher than in shoots. The four common plants found in metal contaminated sites had developed different strategies for survival in the contaminated sites with the aid of indigenous AM fungi.  相似文献   

5.
Arsenic, Pb and Zn tolerance and accumulation were investigated in six populations of Pteris vittata collected from As-contaminated and uncontaminated sites in southeast China compared with Pteris semipinnata (a non-As hyperaccumulator) in hydroponics and on As-contaminated soils. The results showed that both metallicolous and nonmetallicolous population of P. vittata possessed high-level As tolerance, and that the former exhibited higher As tolerance (but not Pb and Zn tolerance) than the latter. In hydroponic culture, nonmetallicolous population clearly showed significantly higher As concentrations in fronds than those in metallicolous populations. In pot trials, As concentrations in fronds of nonmetallicolous population ranged from 1060 to 1639 mg kg?1, about 2.6- to 5.4-folds as those in metallicolous populations. It was concluded that As tolerance in P. vittata resulted from both constitutive and adaptive traits, Pb and Zn tolerances were constitutive properties, and that nonmetallicolous population possesses more effective As hyperaccumulation than metallicolous populations.  相似文献   

6.
The Cedar and Ortega rivers subbasin is a complex environment where both natural and anthropogenic processes influence the characteristics and distributions of sediments and contaminants, which in turn is of importance for maintenance, dredging and pollution control. This study investigated the characteristics and spatial distribution of heavy metals, including lead (Pb), copper (Cu), zinc (Zn) and cadmium (Cd), from sediments in the subbasin using field measurements and three-dimensional kriging estimates. Sediment samples collected from three sampling depth intervals (i.e., 0-0.10, 0.11-0.56 and 0.57-1.88 m) in 58 locations showed that concentrations of Pb ranged from 4.47 to 420.00 mg/kg dry weight, Cu from 2.30 to 107.00 mg/kg dry weight, Zn from 9.75 to 2,050.00 mg/kg dry weight and Cd from 0.07 to 3.83 mg/kg dry weight. Kriging estimates showed that Pb, Cu and Cd concentrations decreased significantly from the sediment depth of 0.10 to 1.5 m, whereas Zn concentrations were still enriched at 1.5 m. It further revealed that the Cedar River area was a potential source area since it was more contaminated than the rest of the subbasin. Comparison of aluminum (Al)-normalized metal concentrations indicated that most of the metals within the top two intervals (0-0.56 m) had concentrations exceeding the background levels by factors of 2-10. A three-dimensional view of the metal contamination plumes showed that all of the heavy metals, with concentrations exceeding the threshold effect level (TEL) that could pose a threat to the health of aquatic organisms, were primarily located above the sediment depth of 1.5 m.  相似文献   

7.
The tissue distribution of Cd, Cu, Pb, Zn and Ca in the endogeic earthworm Aporrectodea caliginosa living in a non-polluted and a heavy metal polluted soil was investigated. The tissues of animals from the contaminated soil contained greater concentrations of Cd, Pb and Zn than the corresponding tissues of animals from the unpolluted soil. The greatest concentrations of Cd, Pb, Zn, and Ca were primarily accumulated within the posterior alimentary canal (PAC), a tissue fraction which contained the greatest proportion of the whole-worm burdens of the respective metals. Cu was distributed fairly evenly in the tissue fractions investigated. The pattern of accumulation for the 'heavy' metals is broadly similar to that for epigeic earthworms; in contrast, a different pattern of tissue accumulation was found for Ca. In animals from the uncontaminated site, the major elemental constituents of the chloragosomes were P, Ca, Zn and S. A significant positive correlation exists between P and Ca within the chloragosomal matrix. These intracellular vesicles are major foci for Pb and Zn accumulation within the PAC, with 'excess' metals associated with P ligands within the chloragosome matrix. The incorporation of Pb and Zn appears to involve the cationic displacement of Ca. Such compartmentation appears to prevent dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a detoxification strategy based on accumulative immobilization. No intracellular localization of Cd was identified in the study, although the Cd concentration in the metalliferous soils examined was not exceptionally high. The observations are discussed in the context of a contribution to enhanced understanding of metal ecotoxicology in earthworms by providing baseline data on a little investigated ecophysiological group of earthworms. Comparisons of metal distribution and mechanisms of metal sequestration are made with other ecophysiological groups of earthworms, and the significance of the findings to biomonitoring and toxicity-testing programmes is considered.  相似文献   

8.
Accumulation of Zn, Cu, Pb and Cd was studied in snails fed for 120 days on diets contaminated with each metal separately and with all metals mixed together. The concentrations of Zn in food were in the range 39 to 12 200 mg kg(-1), Cu 9-1640 mg kg(-1), Pb 0.4-12 700 mg kg(-1), and Cd 0.16-146 mg kg(-1) on a dry weight basis. At the highest concentrations of all metals the consumption rates decreased significantly. For the remaining concentrations, Zn and Cu were accumulated in soft tissue in proportion to their concentrations in food. The lowest treatments of Pb and Cd did not cause any increase in soft tissue concentrations of these metals but at average treatments, a clear increase was observed. Copper was accumulated especially efficiently, exceeding concentrations in food throughout the whole range of treatments. Except for the lower end of experimental treatments, Zn was accumulated approximately in direct proportion to its concentration in the diet. Lead was the most efficiently regulated metal, with soft tissue concentrations always substantially lower than in food. Approximately 60% of Zn, 90% of Cu, 43% of Pb and 68% of Cd on average was assimilated from food. The assimilation efficiency of food alone was ca 74%. The concentrations of metals in shells increased significantly with exposure, but (with one exception) the concentrations in shells did not exceed 5% of those found in soft tissue. We argue that snails are more important as agents of food-chain transport of Cu and Cd, than of Zn or Pb. Our results indicate also that snails are not able to deposit significant quantities of metals in their shells, at least during the time scale of our laboratory experiment.  相似文献   

9.
Zhang MK  Xu JM 《Chemosphere》2003,50(6):733-738
Solute transport of elements in soils depends on the soil structural and hydraulic properties, and it is controlled by sorption and diffusion, which both limit the mobility and distribution of elements in soils. This study was conducted to compare lead (Pb), copper (Cu) and zinc (Zn) concentrations between ped exteriors and interiors of some contaminated soils. The results show that the differences of the heavy metals between exteriors and interiors decreased in the order clayey soil, clayey loam soil, loam soil. For same soils, the differences decreased from Pb to Cu to Zn. The differences in readily extractable concentrations of the three metals between ped exteriors and interiors were much larger than the differences in their total metals, this may indicate that extractable metals were more recently deposited. The higher Pb and Cu concentrations in the ped exteriors than interiors may additionally be explained by anthropogenic input, movement and downward through preferential flow.  相似文献   

10.
The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg?1), Cu (8.21 mg kg?1), Pb (41.62 mg kg?1), and Zn (696 mg kg?1) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg?1, respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.  相似文献   

11.
The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.  相似文献   

12.
Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.  相似文献   

13.
Our work was conducted to investigate the heavy metal toxicity of tailings and soils collected from five metal mines located in the south of Morocco. We used the MetPAD biotest Kit which detects the toxicity specifically due to the heavy metals in environmental samples. This biotest initially developed to assess the toxicity of aquatic samples was adapted to the heterogeneous physico-chemical conditions of anthropogenic soils. Contrasted industrial soils were collected from four abandoned mines (A, B, C and E) and one mine (D) still active. The toxicity test was run concurrently with chemical analyses on the aqueous extracts of tailings materials and soils in order to assess the potential availability of heavy metals. Soil pH was variable, ranging from very acidic (pH 2.6) to alkaline values (pH 8.0-8.8). The tailings from polymetallic mines (B and D) contained very high concentrations of Zn (38,000-108,000 mg kg(-1)), Pb (20,412-30,100 mg kg(-1)), Cu (2,019-8,635 mg kg(-1)) and Cd (148-228 mg kg(-1)). Water-extractable metal concentrations (i.e., soil extracts) were much lower but were highly toxic as shown by the MetPAD test, except for soils from mines A, E and site C3 from mine C. The soil extracts from mine D were the most toxic amongst all the soils tested. On this site, the toxicity of soil water extracts was mainly due to high concentrations of Zn (785-1,753 mg l(-1)), Cu (1.8-82 mg l(-1)) and Cd (2.0-2.7 mg l(-1)). The general trend observed was an increase in metal toxicity measured by the biotest with increasing available metal contents in tailings materials and soils. Therefore, the MetPAD test can be used as a rapid and sensitive predictive tool to assess the heavy metal availability in soils highly contaminated by mining activities.  相似文献   

14.
Metal (Pb, Cu and Zn) partitioning in six separated sediment size fractions (<8, 8-12, 12-19, 19-31, 31-42, 42-60 microm) of river bed sediment have been analyzed by sequential extraction. The concentrations of some major elements (Si, Al, Ca, Mg, K, Na, Fe, Mn and P), and organic and inorganic C were determined to correlate the elemental composition of the sediment with metal speciation and grain size. Results show that Zn and Pb concentrations increase with decreasing grain size. For Big Creek and Big Otter Creek, respectively, the highest concentrations of Zn (326 and 230 mg kg(-1)) and Pb (158 and 67 mg kg(-1)) were found in the smallest (<8 microm) fraction, whereas the Cu levels (619 and 1281 mg kg(-1)) were most abundant in the second smallest (8-12 microm) fraction. The major accumulative phases for Cu, Zn and Pb were carbonates, Fe/Mn oxides and organic matter, but the relative importance of each phase varied for individual metals and grain sizes. The extraction data show increasing potential bioavailability of metals with decreasing grain size. Estimates of metal yields in the study catchments suggest that over 80% of the metal yield in sediment smaller than 63 microm is associated with solids smaller than 31 microm.  相似文献   

15.
Application of poultry litter to cropland may increase metal mobility, because the soluble organic ligands in poultry litter can form water-soluble complexes with metals. In this study, one uncontaminated soil and two metal-contaminated soils were sampled. A portion of the uncontaminated soil was amended with Zn, Pb, and Cd at rates of 400, 200, and 8 mg kg(-1), respectively. Packed soil columns were leached with H2O, EDTA, CaCl2, and poultry litter extract (PLE) solutions separately. No leaching of Zn, Cd, and Pb with the PLE was found in the uncontaminated soil. The retention of PLE-borne Zn indicated the potential for Zn accumulation in the soil. A large portion of the metals was leached from the metal-amended soil, and EDTA solubilized more Zn, Cd, and Pb than CaCl2 and PLE. In the metal-contaminated soils, the leaching of Zn and Cd with PLE was consistently larger than that for CaCl2, indicating that these metals were mobilized by organic ligands. The PLE did not mobilize Pb in these soils. The utilization of poultry litter in metal-contaminated soils might accelerate the movement of Zn and Cd in soil profiles.  相似文献   

16.
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn?>?Cu?>?Pb?>?Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to T?u?ii de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.  相似文献   

17.
Metal tolerance of a range of birch clones (Betula pendula and Betula pubescens) originating from metal-contaminated sites in England, Wales, Belgium and Finland were tested in soils supplemented with several concentrations of copper (Cu) or zinc (Zn) (500, 2000, 5000 mg kg-1 dry wt. soil of CuSO(4).5H2O or ZnSO(4).7H2O) for 4 months and with sub-toxic metal supplements (500 mg CuSO4, 2000 mg ZnSO4) for 6 months. When grown at high concentrations of metals, severe toxicity symptoms (growth inhibition, chlorosis, necrosis) and clear evidence for differences in tolerance to this toxicity were found in a subset of the clones. When all clones were grown at a much lower, sub-toxic level of metal, again significant differences could be found between some of the clones. Clones derived from the same population varied greatly in their tolerance. However, the overall pattern of metal specificity varied in agreement with the type of soil contamination at the site of origin. The growth of the clones from Harjavalta Cu/nickel smelter area was 19% better in Cu than in Zn-supplemented soil, on average. The growth of clones from Maatheide Zn smelter are was 19% poorer in Cu- than in Zn-supplemented soil. Sensitive clones accumulated more Cu and Zn to the above-ground parts. Some birch clones were able to survive at about 20-fold higher than typical total background Cu or Zn concentrations, whereas most clones were able to grow without serious toxic symptoms at about 10-fold concentrations.  相似文献   

18.
The relative tissue accumulation of Pb, Cd and Zn were compared in two populations each of two species of slugs (Arion subfuscus and Deroceras reticulatum). One population was resident at a contaminated Pb/Zn mine site, and the other population was from an uncontaminated site and was transferred for 20 days to microcosms established at the mine site. It was found that when the experiment was conducted during late spring (May), but not in late winter (February), that the Pb and Zn concentrations in the tissues of the 'transplants', were significantly higher than in the tissues of 'residents'; the Cd concentrations in the transplants, although significantly higher in the May sample than in February, did not exceed those of their 'resident' counterparts. It was postulated that: (a) Pb and Zn tolerance in slugs is phenotypically expressed by a reduction in metal accumulation; (b) Cd tolerance, if present, may be characterized by enhanced storage capacity; and (c) the presence of local metal-tolerant ecotypes is a biotic variable that may confound the relationship between dry tissue and environmental metal concentrations that forms a basis of pollution biomonitoring.  相似文献   

19.
We report the findings of a comparative analysis examining patterns of accumulation and partitioning of the heavy metals copper (Cu), lead (Pb) and zinc (Zn) in mangroves from available field-based studies to date, employing both species level analyses and a phylogenetic approach. Despite mangroves being a taxonomically diverse group, metal accumulation and partitioning for all metals examined were broadly similar across genera and families. Patterns of metal accumulation were also similar regardless of whether species were classified as salt secreting or non-secreting. Metals were accumulated in roots to concentrations similar to those of adjacent sediments with root bio-concentration factors (BCF; ratio of root metal to sediment metal concentration) of 1< or =. Root BCFs were constant across the exposure range for all metals. Metal concentrations in leaves were half that of roots or lower. Essential metals (Cu and Zn; translocation factors (TF; ratio of leaf metal to root metal concentration) of 0.52 and 0.53, and leaf BCFs of 0.47 and 0.51, respectively) showed greater mobility than non-essential metals (Pb; TF of 0.31 and leaf BCF of 0.11). Leaf BCFs for the essential metals Cu and Zn decreased as environmental concentrations increased. The non-essential metal Pb was excluded from leaf tissue regardless of environmental concentrations. Thus mangroves as a group tend to operate as excluder species for non-essential metals and regulators of essential metals. For phytoremediation initiatives, mangrove ecosystems are perhaps best employed as phytostabilisers, potentially aiding in the retention of toxic metals and thereby reducing transport to adjacent estuarine and marine systems.  相似文献   

20.
This paper compares the patterns of metal (Pb, Zn, Cd, Cu) accumulation in nine populations of the epigeic earthworm, Lumbricus rubellus, native on metalliferous soils, with the patterns of metal accumulation in batches of L. rubellus sampled from an uncontaminated site and maintained on the nine contaminated soils for 31 days under laboratory conditions. The primary findings were: (1) the Pb, Zn and Cd concentrations in the 'native' worms were significantly higher in most cases than in the 'introduced' worms; (2) multiple regression analyses indicated that the relationships between tissue and soil metal concentrations were similar for 'native' and 'introduced' worms; (3) high soil organic matter content reduced the bioavailability of Pb, but low pH increased Pb bioavailability. It was concluded that, although no phenotypic evidence of metal-tolerant ecotypes was obtained, the exposure of earthworms from uncontaminated soils to contaminated soils under laboratory conditions can provide meaningful integrative data concerning metal bioavailability in soils which, for biomonitoring purposes, often present formidable sampling problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号